On-Farm Network Appreciation Event

Preliminary 2018 Research Results

December 17, 2018

2018 Trial List

Wheat

- Wheat Fusarium Head Blight Timing Trial | 4
- Wheat Plant Growth Regulator Trial | 9
- Wheat Post Anthesis Nitrogen Trial | 21

Pulse & Soybean

- Dry Bean Fungicide Trial | 23
- Field Pea Fungicide Trial | 27
- Soybean Potassium Trial | 33
- Soybean Seed Treatment Trial | 43
- Soybean Fungicide Trial | 53
- Soybean Inoculant Trial Single Vs. No Inoculant | 63
- Soybean Inoculant Trial Double Vs. Single Inoculant | 73
- Soybean Seeding Rate (Population Trial) | 81
- Soybean Residue Management Trial | 95
- Soybean Field Rolling Trial | 97

Corn

- Corn Nitrogen Timing Trial | 99

Important Information to Interpret On-Farm Network Single Page Reports

On-Farm Network field trials are set up using a randomized complete block design (RCBD). An analysis of Variance (ANOVA) has been conducted on all 2018 trials, treating site as a fixed effect and replicate (block) as a random effect.

All single page reports and summaries within this document are based on a single site analysis, ie., site years are not combined. Therefore, the effect of treatment across site years should not be interpreted until a combined analysis has been presented.

Definitions

Confidence level: A 95% confidence level is used within our trials. This means we can say with 95% certainty that we are certain of the outcome.

P-value: A calculated probability used in statistics to either accept or reject the null hypothesis. The null hypothesis for our trials is that there is no difference between treatment means. A p-value of less than 0.05 suggests that there is enough evidence to reject the null hypothesis, meaning there is a significant difference between treatment means. If the p-value is greater than 0.05, then there is not enough evidence to conclude that the observed treatment differences are due to our applied treatment at a 95% confidence level.

Coefficient of Variation (CV): The statistical measure of random variation in a trial. The lower the value, the less variable the data.

MPSG, MWBGA, and MCGA does not endorse the use of products tested in the On-Farm Network. Although trials are conducted at multiple sites under varying conditions, your individual results may vary. Contents of this research publication can only be reproduced with the permission of MPSG, MWBGA, and MCGA.

Table 1: Wheat Fusarium Head Blight Timing trial summary at 4 on-farm trials in Central Manitoba in 2018.

Trial ID	Rural	Variety		Yield		CV	CV P-Value	Statistically Significant @
	Municipality		Late	Rec'd	Untreated			95%
			bu,	/ac		%		
WFHB01	Morris	Rowyn	84.6 a	83.7 ab	80.8 b	2.8	0.0382	Yes
WFHB02	Louise	Brandon	87.5	86.2	84.4	5.6	0.3459	No
WFHB03	Dufferin	Brandon	60.8	58.4		3.4	0.1627	No
WFHB04	Grey	Brandon	65.0	64.9	62.5	3.4	0.3277	No

Table 2: Wheat quality summary for Fusarium Head Blight Timing treatments

TrialID	Treatment	Protein	Don	Falling Number	тwт
	Recommended	14.4	< 0.3	> 360	404
WFHB01	Late	14.5	< 0.3	> 360	406
	Untreated	14.5	< 0.3	> 360	403
	Recommended	15.4	< 0.3	> 360	403
WFHB02	Late	15.5	< 0.3	> 360	404
	Untreated	15.7	0.3	> 360	403
WFHB03	Recommended	16.2	< 0.3	> 360	411
WFNDUS	Late	15.8	< 0.3	> 360	412
	Recommended	14.4	< 0.3	> 360	412
WFHB04	Late	14.3	< 0.3	> 360	412
	Untreated	14.7	< 0.3	> 360	412

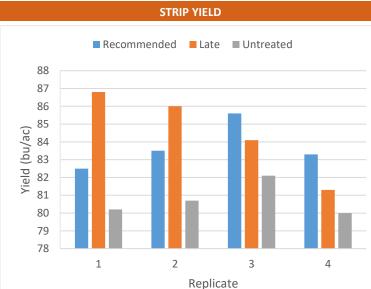
The objective of this study was to quantify the impact of fusarium head blight on the quality of harvested grain by comparing the farmers normal fungicide application at recommended rate and timing to a fungicide application 3 to 5 days later and an untreated control.

4

Trial ID: 2018-WFHB01 – R.M. of Morris

Objective: Quantify the impact of fusarium head blight on the quality of harvested grain by comparing the farmers normal fungicide application at recommended rate and timing to a fungicide application 3 to 5 days later.

TRIAL INI	ORMATION	FIELD IMAGE – JULY 28, 2018
Treatment	Rec'd timing vs. 3-5 days later vs. Untreated	
Rural Municipality	Morris	All and a second se
Previous Crop	Soybean	Plot 1 - Recommended
Soil Texture	Clay	Plot 2 - Check
Tillage	Conventional	Plot 3 - Late
Seeding Date	April 26, 2018	Plot 4 - Recommended
Variety	Rowyn	Plot 5 - Check
Row Spacing	7.5″	Plot 6 - Late
Seeding Rate	175 lbs/ac	Plot 7 - Recommended
Fungicide Product	Caramba	Plot 8 - Check
Rec'd App Date	June 25, 2018	Plot 9 - Late
Rec'd App Timing	20% flower	Plot 10 - Recommended
3-5 Day Later App Date	June 27, 2018	Plot 11 - Check
Harvest Date	August 10, 2018	Piot 12 - Late
PRECI	PITATION [†]	


PRECIPITATION'								
May June July Aug								
Rainfall	28	85	38	27				
Normal	54	86	72	65				

+ Growing season precipitation (mm)

WHEAT QUALITY							
Test Falling Protein Don Weight Number							
Rec'd Timing	14.4	<0.3	404	>360			
3-5 Days Later	14.5	<0.3	406	>360			
Untreated	14.5	<0.3	403	>360			

OVERALL YIELD

	Mean (bu/ac)
Rec'd Timing	83.7 ab*
3-5 Days Later	84.6 a
Untreated	80.8 b
P-Value	0.0382
CV	2.8%
Significance	Yes

* Means followed by the same letter are not significantly different at P=0.05

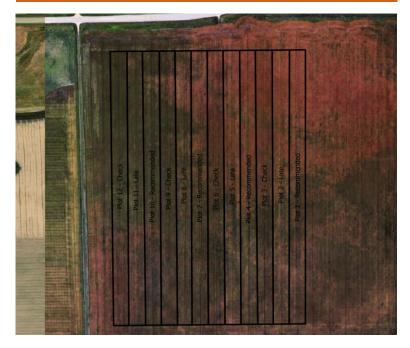
Summary: There was a significant yield difference between a single application of fungicide at the late timing compared to an untreated check; however, there was no significant yield difference between the recommended application timing and the late and untreated check. Wheat quality was consistent between all treatments receiving a #1 grade for CPSR.

Trial ID: 2018-WFHB02 – R.M. of Louise

Objective: Quantify the impact of fusarium head blight on the quality of harvested grain by comparing the farmers normal fungicide application at recommended rate and timing to a fungicide application 3 to 5 days later.

TRIAL INFORMATION Rec'd timing vs. 3-5 days Treatment later vs. Untreated **Rural Municipality** Louise Canola **Previous Crop** Soil Texture Clay Loam Tillage Reduced **Seeding Date** May 1, 2018 Brandon Variety 7.5″ **Row Spacing** 146 lbs/ac **Seeding Rate Fungicide Product** Prosaro XTR **Rec'd App Date** June 27, 2018 Rec'd App Timing First flower 3-5 Day Later App Date June 30, 2018 **Harvest Date** August 16, 2018

PRECIPITATION							
May June July Aug							
Rainfall	54	99	31	37			
Normal	61	90	68	72			


+ Growing season precipitation (mm)

WHEAT QUALITY							
Test Falling Protein Don Weight Number							
Rec'd Timing	14.4	<0.3	412	>360			
3-5 Days Later	14.3	<0.3	412	>360			
Untreated	14.7	<0.3	412	>360			

OVERALL YIELD

	Mean (bu/ac)			
Rec'd Timing	86.2			
3-5 Days Later	87.5			
Untreated	84.4			
P-Value	0.3459			
CV	5.6%			
Significance	No			

FIELD IMAGE – JULY 25, 2018

Recommended ■ Late ■ Untreated 97 95 93 91 Vield (bu/ac) 89 87 85 83 81 79 77 75 1 2 3 4 Replicate

Summary: There was no significant yield difference between the recommended timing, late timing, and untreated check for fusarium head blight fungicide applications. Wheat quality was consistent for all treatments, receiving a #1 grade for CWRS. Rainfall was near normal for June, but below normal for the remainder of the growing season.

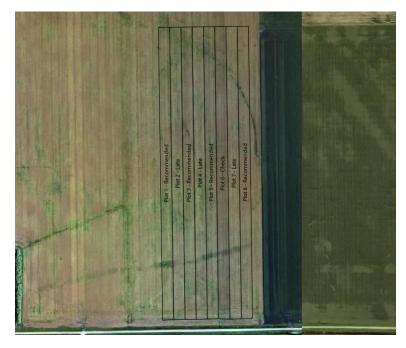
T 204 745.6661 www.mbwheatandbarley.ca

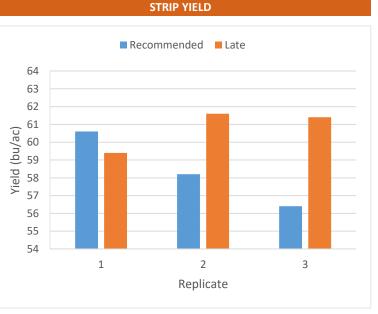
STRIP YIELD

Trial ID: 2018-WFHB03 – R.M. of Dufferin

Objective: Quantify the impact of fusarium head blight on the quality of harvested grain by comparing the farmers normal fungicide application at recommended rate and timing to a fungicide application 3 to 5 days later.

TRIAL INFORMATION					
Treatment	Rec'd timing vs. 3-5 days later				
Rural Municipality	Dufferin				
Previous Crop	Soybean				
Soil Texture	Clay				
Tillage	Conventional				
Seeding Date	May 2, 2018				
Variety	Brandon				
Row Spacing	9″				
Seeding Rate	135 lbs/ac				
Fungicide Product	Caramba				
Rec'd App Date	June 28, 2018				
Rec'd App Timing	20% flower				
3-5 Day Later App Date	July 2, 2018				
Harvest Date	August 9, 2018				


PRECIPITATION							
May June July Aug							
Rainfall	29	70	41	22			
Normal 54 81 66 71							


+ Growing season precipitation (mm)

WHEAT QUALITY							
Test Falling Protein Don Weight Number							
Rec'd Timing	16.2	<0.3	411	>360			
3-5 Days Later	15.8	<0.3	412	>360			

OVERALL YIELD			
	Mean (bu/ac)		
Rec'd Timing	58.4		
3-5 Days Later	60.8		
Yield Difference	2.4		
P-Value	0.1627		
CV	3.4%		
Significance	Νο		

FIELD IMAGE - JULY 28, 2018

Summary: There was no significant yield difference between the recommended and late fungicide application timings for fusarium head blight. Wheat quality was consistent for both treatments, receiving a #1 grade for CWRS. Rainfall was below normal for the entire growing season at this site. There was no replicated untreated check strip in this trial.

Trial ID: 2018-WFHB04 – R.M. of Grey

Objective: Quantify the impact of fusarium head blight on the quality of harvested grain by comparing the farmers normal fungicide application at recommended rate and timing to a fungicide application 3 to 5 days later.

TRIAL INF	ORMATION
Treatment	Rec'd timing vs. 3-5 days later vs. Untreated
Rural Municipality	Grey
Previous Crop	Soybean
Soil Texture	Clay
Tillage	Conventional
Seeding Date	May 1, 2018
Variety	Brandon
Row Spacing	7.5″
Seeding Rate	135 lb/ac
Fungicide Product	Folicur
Rec'd App Date	June 25, 2018
Rec'd App Timing	First flower
3-5 Day Later App Date	June 29, 2018
Harvest Date	August 15, 2018

PRECIPITATION						
	i May	June	i July	Aug		
Rainfall	29	70	41	22		
Normal	54	81	66	71		

+ Growing season precipitation (mm)

WHEAT QUALITY						
	Protein	Don	Test Weight	Falling Number		
Rec'd Timing	15.4	<0.3	403	>360		
3-5 Days Later	15.5	<0.3	404	>360		
Untreated	15.7	0.3	403	>360		

OVERALL YIELD

	Mean (bu/ac)
Rec'd Timing	64.9
3-5 Days Later	65.0
Untreated	62.5
P-Value	0.3277
CV	3.4%
Significance	No

FIELD IMAGE – JULY 28, 2018

Summary: There was no significant yield difference between the recommended timing, late timing, and untreated check for fusarium head blight fungicide applications. Wheat quality was consistent for all treatments, receiving a #1 grade for CWRS. Rainfall was near normal for June, but below normal for the remainder of the growing season.

The objective of this study was to quantify the impact of the plant growth regulator Manipulator 620 (chlormequat chloride) on plant height, lodging, yield, and quality of spring wheat in Manitoba.

Wheat plant growth regulator (PGR) trial summary at 10 on-farm trials across Manitoba in 2018.

Trial ID	Rural	Variety			Height	: v :		Yield		cv	P-Value	Statistically Significant @	Pro	otein
_	Municipality		Treated	Untreated	Difference	Treated	Untreated	Difference	-		95%	Treated	Untreated	
			С	m	cm	bu	/ac	bu/ac	%				%	
WPGR01	Morris	Brandon	57	66	-9	64.6	65.0	-0.4	1.8	0.6629	No	16.4	16.4	
WPGR02	Rhineland	Brandon	77	86	-10	100.8	97.5	3.4	2.5	0.0455	Yes	14.1	14.5	
WPGR03	Grey	Brandon	63	73	-10	75.6	74.9	0.7	1.8	0.3317	No	13.1	13.1	
WPGR04	Pembina	Faller	81	90	-10	103.7	99.9	3.7	6.8	0.4920	No	13.1	13.4	
WPGR05	Hanover	Rowyn	83	87	-4	96.9	94.9	2.0	1.7	0.0855	No	11.3	11.8	
WPGR06	Oakland Wawaneesa	Cardale	78	90	-11	78.4	78.4	0.0	4.7	0.9905	No	13.6	13.7	
WPGR07	Woodlands	Brandon	79	87	-8	69.9	69.3	0.6	2.4	0.6340	No	13.3	14.8	
WPGR08	Killarney Turtle Mountain	Brandon	86	90	-4	95.9	94.3	1.6	1.4	0.1823	No	14.2	14.1	
WPGR09	St. Andrews	Brandon	84	91	-7	86.5	79.5	7.0	5.8	0.0323	Yes	12.7	12.3	
WPGR10	Macdonald	Ellie	63	71	-8	94.2	85.9	8.3	10.2	0.2249	No	15.4	15.5	

Wheat Plant Growth Regulator Trial

Trial ID: 2018-WPGR01 – R.M. of Morris

Objective: Quantify the impact of the plant growth regulator Manipulator 620 (chlormequat chloride) on plant height, lodging, yield and quality of spring wheat.

TRIAL INFORMATION			
Treatment	Manipulator vs. Untreated		
Rural Municipality	Morris		
Previous Crop	Canola		
Soil Texture	Clay		
Tillage	Conventional		
Seeding Date	April 28, 2018		
Variety	ACC Brandon		
Row Spacing	7.5″		
Seeding Rate	117 lbs/ac		
Residual N			
Fertilizer (N-P-K-S)	194–30–0–7.5		
Application Date	June 13, 2018		
Application Timing	5-6 leaf stage		
Application Rate	0.7 L/ac		
Harvest Date	August 8, 2018		

PRECIPITATION⁴ May June July Aug Rainfall 28 85 38 27 Normal 54 86 72 65

+ Growing season precipitation (mm)

WHEAT RESPONSE				
	Plant Height (inch)	Lodging	Protein	
Manipulator	22.5	No	16.4	
Untreated	26.1	No	16.4	

OVERALL YIELD

	Mean (bu/ac)
Manipulator	64.6
Untreated	65.0
Yield Difference	-0.4
P-Value	0.6629
CV	1.8%
Significance	No

Piot 1 - Treated Piot 2 - Untreated Piot 3 - Treated Piot 4 - Untreated Piot 5 - Treated Piot 5 - Treated Piot 6 - Untreated Piot 7 - Treated Piot 8 - Untreated

FIELD IMAGE - JULY 28, 2018

Summary: There was no significant yield difference between Manipulator applied at the 5-6 leaf growth stage and untreated check strips. Rainfall was near normal for the month of June but below normal for the remainder of the growing season. There was no lodging observed within the trial. Manipulator reduced plant height by 3.6 inches and there was no significant difference in seed protein content between the two treatments.

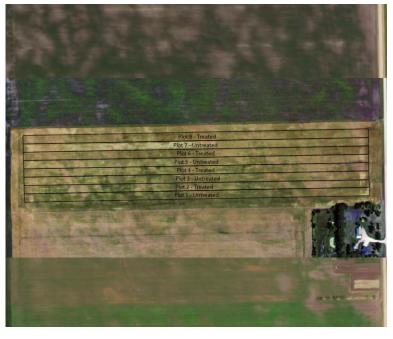
11 **Wheat Plant Growth Regulator Trial**

Trial ID: 2018-WPGR02 - R.M. of Rhineland

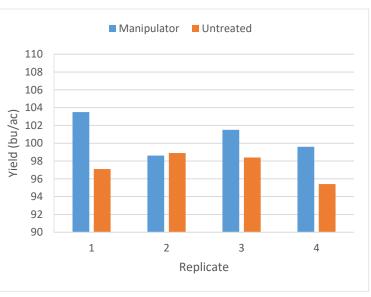
Objective: Quantify the impact of the plant growth regulator Manipulator 620 (chlormequat chloride) on plant height, lodging, yield and quality of spring wheat.

TRIAL INFORMATION			
Treatment	Manipulator vs. Untreated		
Rural Municipality	Rhineland		
Previous Crop	Dry Beans		
Soil Texture	Clay Loam		
Tillage	Heavy Harrow 1x		
Seeding Date	May 2, 2018		
Variety	Brandon		
Row Spacing	7.5″		
Seeding Rate	150 lbs/ac (36 g TKW)		
Residual N			
Fertilizer (N-P-K-S)	120-40-20-0		
Application Date	June 12, 2018		
Application Timing	5-6 leaf stage (GS 31)		
Application Rate	0.7 L/ac		
Harvest Date	August 10, 2018		

PRECIPITATION May June July Aug Rainfall 34 44 39 42 Normal 56 85 75 66


+ Growing season precipitation (mm)

WHEAT RESPONSE					
	Plant Height (inch)	Lodging	Protein		
Manipulator	30.2	No	14.1		
Untreated	34.0	Yes	14.5		


OVERALL YIELD

	Mean (bu/ac)
Manipulator	100.8
Untreated	97.5
Yield Difference	3.3
P-Value	0.0455
CV	2.5%
Significance	Yes

FIELD IMAGE - JULY 28, 2018

STRIP YIELD

Summary: There was a significant yield difference of 3.3 bu/ac between Manipulator applied at the 5-6 leaf growth stage (GS31) and untreated check strips. Rainfall was below average for the entire growing season; however, there was lodging observed in the untreated control strips. Manipulator reduced the plant height by 3.8 inches and there was no significant difference in seed protein content between the two treatments.

¹² Wheat Plant Growth Regulator Trial

Trial ID: 2018-WPGR03 – R.M. of Grey

Objective: Quantify the impact of the plant growth regulator Manipulator 620 (chlormequat chloride) on plant height, yield and quality of spring wheat.

TRIAL INFORMATION			
Treatment	Manipulator vs. Untreated		
Rural Municipality	Grey		
Previous Crop	Soybean		
Soil Texture	Clay		
Tillage	Conventional		
Seeding Date	April 30, 2018		
Variety	Brandon		
Row Spacing	7.5″		
Seeding Rate	2.2 bu/ac		
Residual N			
Fertilizer (N-P-K-S)	135-40-10-10		
Application Date	June 13, 2018		
Application Timing	5-6 leaf stage		
Application Rate	0.7 L/ac		
Harvest Date	August 10, 2018		

May June July Aug Rainfall 29 70 41 22 Normal 54 81 66 71

+ Growing season precipitation (mm)

WHEAT RESPONSE				
	Plant Height (inch)	Lodging	Protein	
Manipulator	24.8	No	13.1	
Untreated	28.7	No	13.1	

OVERALL YIELD

	Mean (bu/ac)
Manipulator	75.6
Untreated	74.9
Yield Difference	0.7
P-Value	0.3317
CV	1.8%
Significance	No

MWBGA would like to thank Engage Agro for providing the product for this trial.

Plot 1 - Treated

FIELD IMAGE - JULY 28, 2018

STRIP YIELD

Manipulator Untreated 80 79 78 77 Yield (bu/ac) 76 75 74 73 72 71 70 1 2 3 4 Replicate

Summary: There was no significant yield difference between Manipulator applied at the 5-6 leaf growth stage and untreated check strips. Rainfall was below normal for the entire growing season and there was no lodging observed within the trial. Manipulator reduced plant height by 3.9 inches and there was no significant difference in seed protein content between the two treatments.

Wheat Plant Growth Regulator Trial

Trial ID: 2018-WPGR04 – R.M. of Pembina

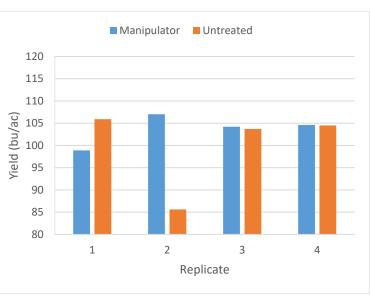
Objective: Quantify the impact of the plant growth regulator Manipulator 620 (chlormequat chloride) on plant height, yield and quality of spring wheat.

TRIAL INFORMATION			
Treatment	Manipulator vs. Untreated		
Rural Municipality	Pembina		
Previous Crop	Canola		
Soil Texture	Clay Loam		
Tillage	Reduced		
Seeding Date	May 4, 2018		
Variety	Faller		
Row Spacing	7.5″		
Seeding Rate	150 lbs/ac		
Residual N			
Fertilizer (N-P-K-S)	160-55-10-10		
Application Date	June 19, 2018		
Application Timing	5-6 leaf stage		
Application Rate	0.7 L/ac		
Harvest Date	August 23, 2018		

PRECIPITATION				
May June July Aug				
Rainfall	59	111	41	38
Normal	55	83	79	65

+ Growing season precipitation (mm)

WHEAT RESPONSE				
Plant Height (inch) Lodging Protein				
Manipulator	31.9	No	13.1	
Untreated	35.6	Yes	13.4	


OVERALL YIELD

	Mean (bu/ac)
Manipulator	103.7
Untreated	99.9
Yield Difference	3.7
P-Value	0.4920
CV	6.8%
Significance	No

FIELD IMAGE – JULY 25, 2018

STRIP YIELD

Summary: There was no significant yield difference between Manipulator applied at the 5-6 leaf growth stage and untreated check strips. Rainfall was above average for the month of June but below average for the remainder of the growing season. There was lodging observed within the untreated control strips at this location. Manipulator reduced plant height by 3.7 inches and there was no significant difference in seed protein content between the two treatments.

Wheat Plant Growth Regulator Trial

Trial ID: 2018-WPGR05 – R.M. of Hanover

Objective: Quantify the impact of the plant growth regulator Manipulator 620 (chlormequat chloride) on plant height, yield and quality of spring wheat.

TRIAL INFORMATION			
Treatment	Manipulator vs. Untreated		
Rural Municipality	Hanover		
Previous Crop	Canola		
Soil Texture	Clay		
Tillage	Direct Seed into Winter Wheat		
Seeding Date	May 16, 2018		
Variety	Rowyn		
Row Spacing	10"		
Seeding Rate	2.6 bu/ac		
Residual N			
Fertilizer (N-P-K-S)	110-37-3.4-0		
Application Date	June 9, 2018		
Application Timing	5-6 leaf stage		
Application Rate	0.7 L/ac		
Harvest Date	August 17, 2018		

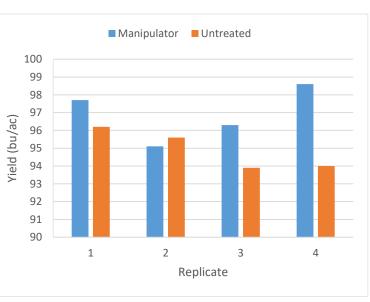
 May
 June
 July
 Aug

 Rainfall
 42
 81
 36
 30

 Normal
 58
 91
 80
 66

+ Growing season precipitation (mm)

WHEAT RESPONSE				
	Plant Height (inch)	Lodging	Protein	
Manipulator	32.8	No	11.3	
Untreated	34.2	Yes	11.8	


OVERALL YIELD

	Mean (bu/ac)	
Manipulator	96.9	
Untreated	94.9	
Yield Difference	2.0	
P-Value	0.0855	
cv	1.7%	
Significance	No	

FIELD IMAGE – JULY 28, 2018

STRIP YIELD

Summary: There was no significant yield difference between Manipulator applied at the 5-6 leaf growth stage and untreated check stirps. Rainfall was near normal for the month of June but below normal for the remainder of the growing season. There was lodging observed within the untreated control strip at this location. Manipulator reduced plant height by 1.4 inches and there was no significant difference in seed protein content between the two treatments.

¹⁵ Wheat Plant Growth Regulator Trial

Trial ID: 2018-WPGR06 – R.M. of Oakland-Wawanesa

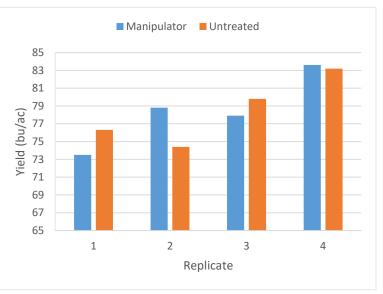
Objective: Quantify the impact of the plant growth regulator Manipulator 620 (chlormequat chloride) on plant height, yield and quality of spring wheat.

TRIAL INFORMATION		
Treatment	Manipulator vs. Untreated	
Rural Municipality	Oakland-Wawanesa	
Previous Crop	Soybean	
Soil Texture	Clay Loam	
Tillage	Reduced	
Seeding Date	May 2, 2018	
Variety	Cardale	
Row Spacing	10"	
Seeding Rate	1.5 bu/ac	
Residual N		
Fertilizer (N-P-K-S)	80-30-0-0	
Application Date	June 13, 2018	
Application Timing	5-6 leaf stage	
Application Rate	0.7 L/ac	
Harvest Date	August 20, 2018	

May June July Aug Rainfall 29 61 57 27 Normal 51 73 74 68

+ Growing season precipitation (mm)

WHEAT RESPONSE				
Plant Height (inch) Lodging Protein				
Manipulator	30.9	No	13.6	
Untreated	35.3	No	13.7	


OVERALL YIELD

	Mean (bu/ac)
Manipulator	78.4
Untreated	78.4
Yield Difference	0.0
P-Value	0.9905
CV	4.7%
Significance	No

FIELD IMAGE – JULY 24, 2018

STRIP YIELD

Summary: There was no significant yield difference between Manipulator applied at the 5-6 leaf growth stage and untreated check strips. Rainfall was below normal for the entire growing season and there was no lodging observed within the trial. Manipulator reduced plant height by 4.4 inches and there was no significant difference in seed protein content between the two treatments.

Treatment

Rural Municipality

Previous Crop

Soil Texture

Seeding Date

Row Spacing Seeding Rate

Residual N

Fertilizer (N-P-K-S) Application Date

Application Timing

Application Rate

Harvest Date

Tillage

Variety

TRIAL INFORMATION

Woodlands

Soybean

Clay Loam

Reduced

128 lbs/ac

70 lbs N/ac 65-10-0-0

June 13, 2018

5-6 leaf stage

August 12, 2018

0.7 L/ac

10"

April 30, 2018 Brandon

Manipulator vs. Untreated

¹⁶ Wheat Plant Growth Regulator Trial

Trial ID: 2018-WPGR07 – R.M. of Woodlands

Objective: Quantify the impact of the plant growth regulator Manipulator 620 (chlormequat chloride) on plant height, yield and quality of spring wheat.

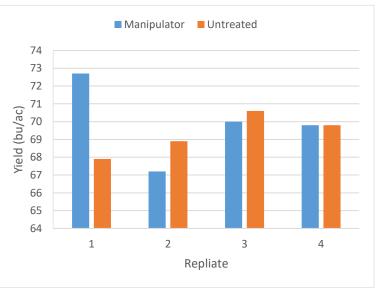
FIELD IMAGE – JULY 29, 2018

 PRECIPITATION⁺

 May
 June
 July
 Aug

 Rainfall
 41
 62
 23
 45

 Normal
 54
 92
 66
 63


+ Growing season precipitation (mm)

WHEAT RESPONSE				
Plant Height (inch) Lodging Protein				
Manipulator	31.1	No	13.3	
Untreated	34.2	No	14.8	

OVERALL YIELD

	Mean (bu/ac)
Manipulator	69.9
Untreated	69.3
Yield Difference	0.6
P-Value	0.6340
CV	2.4%
Significance	No

STRIP YIELD

Summary: There was no significant yield difference between Manipulator applied at the 5-6 leaf growth stage and untreated check strips. Rainfall was below normal for the entire growing season and there was no lodging observed within the trial. Manipulator reduced plant height by 3.1 inches and there was no significant difference in seed protein content between the two treatments.

Wheat Plant Growth Regulator

Trial ID: 2018-WPGR08 – R.M. of Killarney-Turtle Mountain

Objective: Quantify the impact of the plant growth regulator Manipulator 620 (chlormequat chloride) on plant height, yield and quality of spring wheat.

TRIAL INFORMATION Manipulator vs. Untreated Treatment **Rural Municipality** Killarney-Turtle Mountain **Previous Crop** Soybean Soil Texture Loam to Clay Loam Tillage Reduced **Seeding Date** May 9, 2018 Variety Brandon 10" Row Spacing **Seeding Rate** 135 lbs/ac **Residual N** Fertilizer (N-P-K-S) 170 lbs N - manure **Application Date** June 12, 2018 **Application Timing** 5-6 leaf stage

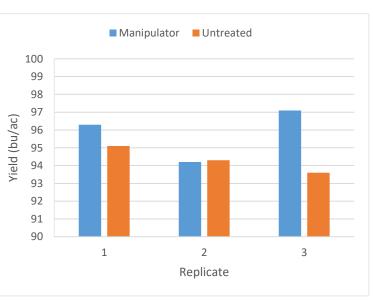
Harvest Date August 20, 2018 **PRECIPITATION⁺** May June July Aug Rainfall 131 29 35 23 Normal 90 68 72 61

0.7 L/ac

+ Growing season precipitation (mm)

Application Rate

WHEAT RESPONSE				
	Plant Height (inch)	Lodging	Protein	
Manipulator	33.8	No	14.2	
Untreated	35.3	No	14.1	


OVERALL YIELD

	Mean (bu/ac)
Manipulator	95.9
Untreated	94.3
Yield Difference	1.5
P-Value	0.1823
CV	1.4%
Significance	No

FIELD IMAGE – JULY 24, 2018

STRIP YIELD

Summary: There was no significant yield difference between Manipulator applied at the 5-6 leaf growth stage and untreated check strips. Rainfall was above normal for the month of June but below normal for the remainder of the growing season. There was no lodging observed within the trial. Manipulator reduced plant height by 1.5 inches and there was no significant difference in seed protein content between the two treatments.

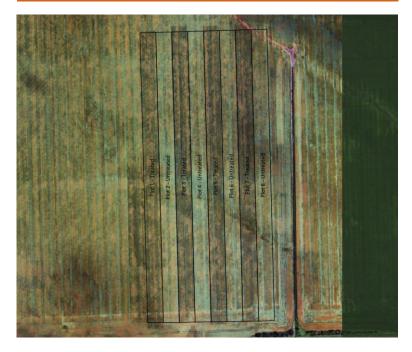
Wheat Plant Growth Regulator

Trial ID: 2018-WPGR09 – R.M. of St. Andrews

Objective: Quantify the impact of the plant growth regulator Manipulator 620 (chlormequat chloride) on plant height, yield and quality of spring wheat.

TRIAL INFORMATION		
Treatment	Manipulator vs. Untreated	
Rural Municipality	St. Andrews	
Previous Crop	Canola	
Soil Texture	Clay	
Tillage	1x high speed disc	
Seeding Date	May 4, 2018	
Variety	Brandon	
Row Spacing	7.5″	
Seeding Rate	105 lbs/ac	
Residual N		
Fertilizer (N-P-K-S)	135-24-0-0	
Application Date	June 14, 2018	
Application Timing	5-6 leaf stage	
Application Rate	0.7 L/ac	
Harvest Date	August 18, 2018	

PRECIPITATION [†]				
May June July Aug				
Rainfall	39	93	32	63
Normal	54	91	81	74


+ Growing season precipitation (mm)

WHEAT RESPONSE				
	Plant Height (inch)	Lodging	Protein	
Manipulator	32.9	No	12.7	
Untreated	35.8	No	12.3	

OVERALL YIELD

	Mean (bu/ac)
Manipulator	86.5
Untreated	79.5
Yield Difference	7.0
P-Value	0.0323
CV	5.8%
Significance	Yes

FIELD IMAGE - JULY 29, 2018

Summary: There was a significant yield difference of 7 bu/ac between Manipulator applied at the 5-6 leaf growth stage and untreated check strips. Rainfall was near normal for the month of June but below normal for the remainder of the growing season. There was lodging observed within the untreated check strip at this location. Manipulator reduced plant height by 2.9 inches and there was no significant difference in seed protein content between the two treatments.

T 204 745.6661

www.mbwheatandbarley.ca

Wheat Plant Growth Regulator Trial

Trial ID: 2018-WPGR10 – R.M. of Macdonald

Objective: Quantify the impact of the plant growth regulator Manipulator 620 (chlormequat chloride) on plant height, yield and quality of spring wheat.

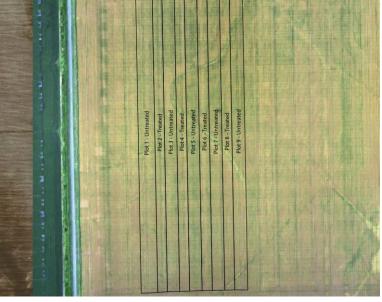
TRIAL INFORMATION		
Treatment	Manipulator vs. Untreated	
Rural Municipality	Macdonald	
Previous Crop	Soybean	
Soil Texture	Clay	
Tillage	Reduced	
Seeding Date	May 2, 2018	
Variety	Ellie	
Row Spacing	7.5″	
Seeding Rate	132 lbs/ac	
Residual N	29 lbs N/ac	
Fertilizer (N-P-K-S)	150-45-0-10	
Application Date	June 14, 2018	
Application Timing	5-6 leaf stage	
Application Rate	0.7 L/ac	
Harvest Date August 12, 2018		

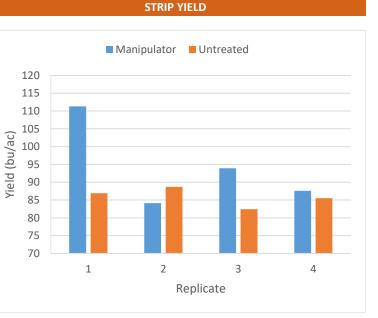
 PRECIPITATION[†]

 May
 June
 July
 Aug

 Rainfall
 40
 81
 74
 24

 Normal
 59
 92
 78
 68


+ Growing season precipitation (mm)


WHEAT RESPONSE				
	Plant Height (inch)	Lodging	Protein	
Manipulator	25.0	No	15.4	
Untreated	28.1	No	15.5	

OVERALL YIELD

	Mean (bu/ac)
Manipulator	94.2
Untreated	85.9
Yield Difference	8.3
P-Value	0.2249
CV	10.2%
Significance	No

FIELD IMAGE - JULY 28, 2018

Summary: There was no significant yield difference between Manipulator applied at the 5-6 leaf growth stage and untreated check strips. It is unclear why there was such a yield difference observed within the first replicate of this trial. Rainfall was near normal for the June and July and there was no lodging observed within the trial. Manipulator reduced plant height by 3.1 inches and there was no difference in seed protein content between the two treatments.

The objective of this study was to quantify the impact of a post anthesis nitrogen (PAN) application on spring wheat yield and quality.

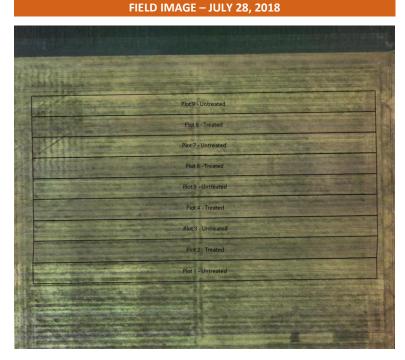
Wheat post anthesis nitrogen trial summary at one location in Manitoba in 2018.

Trial ID	Rural Variaty		Leaf	Burn	Pro	tein	Yi	ield	Yield	cv	P-Value	Statistically Significant @
	Municipality	Variety 1	Treated	Untreated	Treated	Untreated	Treated	Untreated	Difference	CV	r-value	95%
			% lea	f area			bι	u/ac	bu/ac	%		
WPAN01	Dufferin	Brandon	9.7%	0.5%	14.9	14.3	97.3	96.9	0.3	2.7	0.5237	No

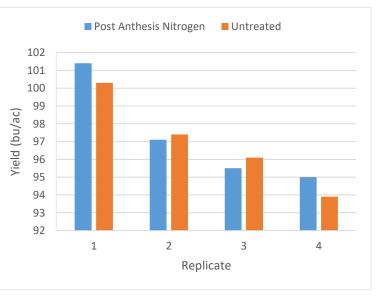
Wheat Post Anthesis Nitrogen Trial

Trial ID: 2018-WPAN01 - R.M. of Dufferin

Objective: Quantify the impact of a post anthesis nitrogen (PAN) application on spring wheat yield and quality.


TRI	TRIAL INFORMATION				
Treatment	PAN vs. untreated				
Rural Municipality	Dufferin				
Previous Crop	Soybean				
Soil Texture	Clay				
Tillage	Reduced				
Seeding Date	April 30, 2018				
Variety	Brandon				
Row Spacing	7.5″				
Seeding Rate	150 lbs/ac (39 g TKW)				
Residual N	13 lb N/ac				
Fertilizer (N-P-K-S)	138-80-0-15				
PAN App Date	July 6, 2018				
Application Rate	10 gal UAN + 15 gal water				
Harvest Date	August 15, 2018				

PRECIPITATION						
	May	June	July	Aug		
Rainfall	42	92	44	28		
Normal	54	81	66	71		


+ Growing season precipitation (mm)

WHEAT RESPONSE					
Leaf Burn* Protein					
9.7%	14.9 a				
0.5%	14.3 b				
	Leaf Burn* 9.7%				

OVERALL YIELD				
	Mean (bu/ac)			
Post Anthesis Nitrogen	97.3			
Untreated	96.9			
Yield Difference	0.3			
P-Value	0.5237			
CV	2.7%			
Significance	No			

STRIP YIELD

Summary: There was no significant yield difference between a post anthesis application of nitrogen compare to untreated check strips. There was approximately 10% leaf area damaged from leaf burn caused by the post anthesis nitrogen application. The post anthesis nitrogen application significantly increased protein by 0.6% compared to the untreated control. Both treatments received a number 1 grade for CWRS.

The objective of this study was to quantify the agronomic and economic impacts of foliar fungicide applied at R2 – beginning pod in dry bean fields. A single application of fungicide was compared to untreated check strips.

Dry bean foliar fungicide trial summary at three On-Farm Network trials in Central Manitoba in 2018.

Trial ID	Rural Bean Class Product Seeding Yield		eld	Yield	сv	P-Value	Statistically Significant			
	Municipality		Troudet	Date	Treated	Treated Untreated			····	@ 95%
					lbs	/ac	lbs/ac	%		
DBF01	Thompson	Pinto	Lance	May 23	2855	2802	52	3.1	0.2398	No
DBF02	Rhineland	Navy	Cotegra	May 22	2214	2302	-88	7.2	0.5051	No
DBF03	Stanley	Pinto	Cotegra	May 16	2024	2022	1	2.7	0.8766	No

T 204 745.6488 www.manitobapulse.ca

Dry Bean Fungicide Trial – Pinto Beans

Trial ID: 2018-DBF01 - R.M. of Thompson

Objective: The objective of this study was to quantify the agronomic and economic impacts of foliar fungicide in dry bean fields. A single application of Lance was compared to an untreated check strip.

TRIAL INFORMATION

Treatment	Lance vs. Untreated				
Rural Municipality	Thompson				
Previous Crop	Corn				
Soil Description	Loam				
Tillage	Conventional				
Planting Date	May 23, 2018				
Variety	Vibrant				
Row Spacing	30"				
Plant Population @ R7	69,000 plants/ac				
Application Date	July 13, 2018				
Application Timing	R2 – beginning pod				
Application Rate	227 g/ac (25 ac/case)				
Harvest Date	September 3, 2018				
DDECIDI					

PRECIPITATION								
	1	May		June	1	July	l	Aug
Rainfall	i	41		55	1	63	1	30
Normal	- <u> </u>	62		83	1-	70	 	67

+ Growing season precipitation (mm)

WHITE MOULD DISEASE RATING[†]

	Incidence	Severity
Lance	0	0
Untreated	0	0
P-Value	n/a	n/a
Significance	No	No

+ Rated on a scale of 0-5 (0 = no disease, 5 = full infection) at growth stage R7

OVERALL YIELD			
	Mean (lbs/ac)		
Lance	2829		
Untreated	2858		
Yield Difference	52		
P-Value	0.2398		
CV	3.1%		
Significance	Νο		

FIELD IMAGE – AUG. 11, 2018

Lance Untreated 3300 3200 3100 3000 Yield (Ibs/ac) 2900 2800 2700 2600 2500 2400 2300 1 2 3 4 Replicate

STRIP YIELD

Summary: There was no significant yield difference between a single application of Lance applied at R2 (beginning pod) and an untreated check. Rainfall was below normal for the growing season and there was no white mould observed within the trial when rated at R7 (full seed).

Dry Bean Fungicide Trial – Navy Beans

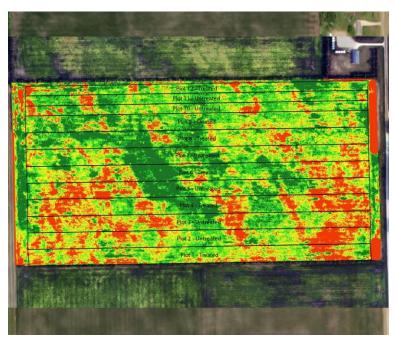
Trial ID: 2018-DBF02 – R.M. of Rhineland

Objective: The objective of this study was to quantify the agronomic and economic impacts of foliar fungicide in dry bean fields. A single application of Cotegra was compared to an untreated check strip.

TRIAL INFORMATION Cotegra vs. Untreated Treatment **Rural Municipality** Rhineland **Previous Crop** Corn **Soil Description** Very Fine Sandy Loam Tillage Conventional **Planting Date** May 22, 2018 Variety T9905 **Row Spacing** 30″ Plant Population @ R8 80,000 plants/ac **Application Date** July 13, 2018 **Application Timing** R2 - beginning pod 400 ml/ac **Application Rate Harvest Date** September 5, 2018

PRECIPITATION						
i May i June i July i Aug						
Rainfall	34	44	39	42		
Normal	56	85	75	66		

+ Growing season precipitation (mm)


WHITE MOULD DISEASE RATING[†]

	Incidence	Severity
Cotegra	0	0
Untreated	0	0
P-Value	n/a	n/a
Significance	No	No

+ Rated on a scale of 0-5 (0 = no disease, 5 = full infection) at growth stage R7

OVERALL YIELD				
	Mean (lbs/ac)			
Cotegra	2214			
Untreated	2302			
Yield Difference	- 88			
P-Value	0.5041			
CV	7.2%			
Significance	Νο			

NDVI FIELD IMAGE – AUG. 11, 2018

Summary: There was no significant yield difference between a single application of Cotegra applied at R2 (beginning pod) and an untreated check. Rainfall was below normal for the growing season and there was no white mould observed within the trial when rated at R7 (full seed).

Dry Bean Fungicide Trial – Pinto Beans

Trial ID: 2018-DBF03 – R.M. of Stanley

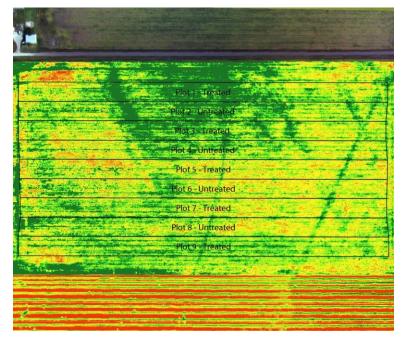
Objective: The objective of this study was to quantify the agronomic and economic impacts of foliar fungicide in dry bean fields. A single application of Cotegra was compared to an untreated check strip.

TRIAL INFORMATION	

Treatment	Cotegra vs. Untreated			
Rural Municipality	Stanley			
Previous Crop	Canola			
Soil Description	Clay			
Tillage	Conventional			
Planting Date May 16, 2018				
Variety	ety Windbreakers			
Row Spacing	30"			
Plant Population @ R8	81,000 plants/ac			
Application Date	July 13, 2018			
Application Timing	R2 – beginning pod			
Application Rate	400 ml/ac			
Harvest Date	September 1, 2018			
PRECIPITATION				

PRECIPITATION'							
May June July Aug							
Rainfall	41	, 74	51	30			
Normal	62	83	70	67			

+ Growing season precipitation (mm)


WHITE MOULD DISEASE RATING

	Incidence	Severity
Cotegra	0	0
Untreated	0	0
P-Value	n/a	n/a
Significance	No	No

+ Rated on a scale of 0-5 (0 = no disease, 5 = full infection) at growth stage R7

OVERALL YIELD				
	Mean (lbs/ac)			
Cotegra	2024			
Untreated	2022			
Yield Difference	1			
P-Value	0.8766			
CV	2.7%			
Significance	No			

NDVI FIELD IMAGE – AUG. 11, 2018

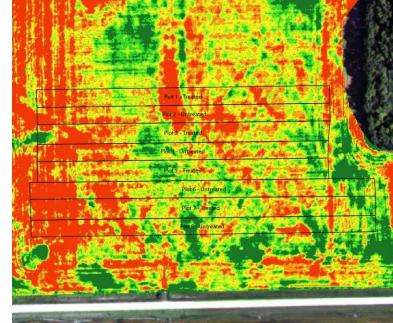
Summary: There was no significant yield difference between a single application of Cotegra applied at R2 (beginning pod) and an untreated check. Rainfall was below normal for the growing season and there was no white mould observed within the trial when rated at R7 (full seed).

26

The objective of this study was to quantify the agronomic and economic impacts of foliar fungicide in field peas. Trials consisted of either a single application of fungicide compared to untreated check strips, or a single application of fungicide compared to two applications of fungicide applied 7-14 days apart.

Field pea foliar fungicide trial summary for six On-Farm Network trials across Manitoba in 2018.

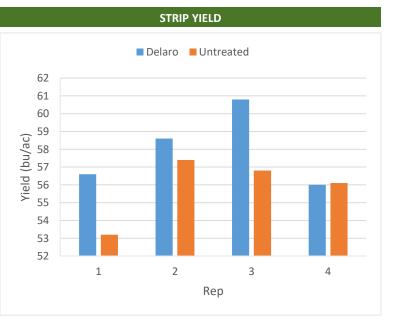
Trial ID	Rural	Treat	ment	Yield		Yield	сv	P-Value	Statistically Significant @
	Municipality	Treated	Untreated	••••••	Untreated	Difference			95%
				-		bu/ac	%		
PF01	Rockwood	Delaro	Untreated	58.0	55.9	2.1	3.8	0.1125	No
PF03	Rhineland	Dyax 2nd App	Priaxor 1st App	52.5	52.3	0.2	5.5	0.9033	No
PF04	Morton	Delaro 2nd App	Delaro 1st App	73.2	70.5	2.8	3.8	0.0084	Yes
PF05	Hamiota	Dyax	Untreated	73.7	72.0	1.8	2.3	0.1505	No
PF06	Prairie View	Delaro 2nd App	Priaxor 1st App	80.5	77.7	2.8	3.3	0.2216	No
PF07	Swan Valley	Delaro Late	Headline Early	77.2	71.7	5.5	4.9	0.0121	Yes



Trial ID: 2018-PF01 – R.M. of Rockwood

Objective: Quantify the agronomic and economic impacts of foliar fungicide in field peas. A single application of Delaro was compared to an untreated check strip.

TRIAL INFORMATION			
Treatment	Delaro vs. Untreated		
Rural Municipality	Rockwood		
Previous Crop	Oats		
Soil Texture	Very Fine Sandy Loam		
Tillage	Conventional		
Planting Date	May 6, 2018		
Variety	AAC Carver		
Row Spacing	10"		
Seeding Rate	3 bu/ac		
Application Date	June 28, 2018		
Application Timing	First Flower		
Application Rate	355 ml/ac (20 ac/jug)		
Application Method	Ground		
Harvest Date	August 12, 2018		


NDVI FIELD IMAGE – JULY 29, 2018

PRECIPITATION						
May June July Aug						
Rainfall	47	90	90	77		
Normal	54	92	66	63		

+ Growing season precipitation until harvest (mm)

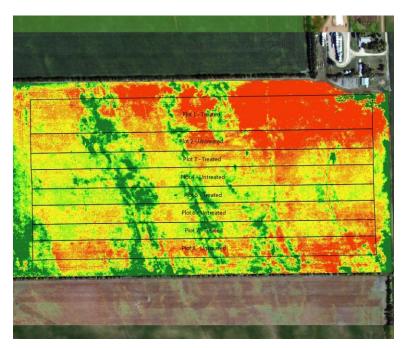
OVERALL YIELD				
Mean (bu/ac)				
Delaro	58.0			
Untreated	55.9			
Yield Difference	2.1			
P-Value	0.1125			
CV	3.8%			
Significance	No			

Summary: There was no significant yield difference between a single application of Delaro applied at first flower compared to an untreated check. Rainfall was above normal for the month of July, and near normal for the remainder of the growing season.

Trial ID: 2018-PF03 – R.M. of Rhineland

Objective: Quantify the agronomic and economic impacts of foliar fungicides in field peas. One application of fungicide was compared to two applications of fungicide. The first application was Priaxor and the second application was Dyax. There was no untreated check strip within this trial.

TRIAL INFORMATION


Treatment	Priaxor 1 st app vs. Priaxor 1 st app and Dyax 2 nd app
Rural Municipality	Rhineland
Previous Crop	Corn
Soil Texture	Clay Loam
Tillage	Conventional
Planting Date	April 30, 2018
Variety	LaCombe
Row Spacing	7.5″
Seeding Rate	180 lbs/ac
App Date – Priaxor	June 20, 2018
App Timing – Priaxor	First Flower
App Rate – Priaxor	120 ml/ac (80 ac/jug)
App Method – Priaxor	Ground
App Date – Dyax	June 30, 2018
App Timing – Dyax	Late Flower
App Rate – Dyax	160 ml/ac (60 ac/jug)
App Method – Dyax	Ground
Harvest Date	August 6, 2018

PRECIPITATION						
May June July Aug						
Rainfall	34	44	39	42		
Normal	56	85	· 75	66		

+ Growing season precipitation (mm)

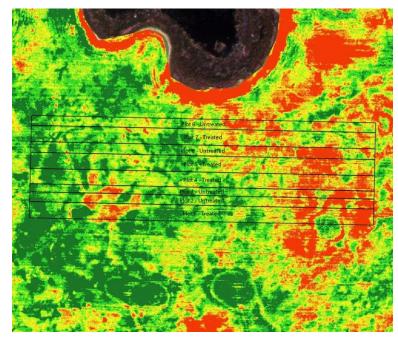
OVERALL YIELD						
	Mean (bu/ac)					
Priaxor - 1 st App + Dyax 2 nd App	52.5					
Priaxor - 1st App	52.3					
Yield Difference	0.2					
P-Value	0.9033					
CV	5.5%					
Significance	No					

NDVI FIELD IMAGE – JULY 28, 2018

STRIP YIELD

Summary: There was no significant yield difference between a single application of Priaxor applied at first flower and a single application of Priaxor applied at first flower followed by an application of Dyax applied 10 days later. There was a visual colour difference observed at harvest between the two treatments but did not result in a yield difference. Rainfall was below for the entire growing season. There was no untreated check within this trial.

T 204 745.6488 www.manitobapulse.ca



Trial ID: 2018-PF05 – R.M. of Hamiota

Objective: Quantify the agronomic and economic impacts of foliar fungicide in field peas. A single application of Dyax was compared to an untreated check strip.

TRIAL INFORMATION					
Treatment Dyax vs. Untreated					
Rural Municipality	Hamiota				
Previous Crop	Soybean				
Soil Texture	Clay Loam				
Tillage No-Till					
Planting Date	May 10, 2018				
Variety	CDC Amarillo				
Row Spacing	10"				
Seeding Rate	2.5 bu/ac				
Application Date June 27, 2018					
Application Timing	First Flower				
Application Rate	160 ml/ac (60 ac/jug)				
Application Method Ground					
Harvest Date	August 22, 2018				

NDVI FIELD IMAGE – JULY 30, 2018

PRECIPITATION										
	May June July Aug									
Rainfall	43	109	67	21						
Normal	41	79	59	53						

+ Growing season precipitation until harvest (mm)

OVERALL YIELD					
	Mean (bu/ac)				
Dyax	73.7				
Untreated	72.0				
Yield Difference	1.7				
P-Value	0.1505				
CV	2.3%				
Significance	Νο				

Summary: There was no significant yield difference between a single application of Dyax applied at first flower and an untreated check. Rainfall was above normal for the month of June and near normal during the reproductive phases.

Trial ID: 2018-PF06 – R.M. of Prairie View

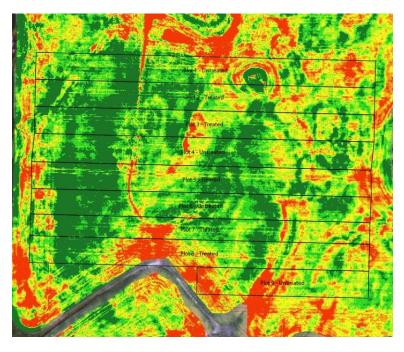
Objective: Quantify the agronomic and economic impacts of foliar fungicides in field peas. One application of fungicide was compared to two applications of fungicide. The first application was Priaxor and the second application was Delaro. There was no untreated check strip within this trial.

TRIAL INFORMATION

Treatment	Priaxor 1 st app vs. Priaxor 1 st app and Delaro 2 nd app				
Rural Municipality	Prairie View				
Previous Crop	Canola				
Soil Texture	Clay Loam				
Tillage	Till fall 1x				
Planting Date	May 7, 2018				
Variety	CDC Amarillo				
Row Spacing	12"				
Seeding Rate	3 bu/ac				
App Date – Priaxor	June 28, 2018				
App Timing – Priaxor	First Flower				
App Rate – Priaxor	120 ml/ac (80 ac/jug)				
App Method - Priaxor	Ground				
App Date – Delaro	July 11, 2018				
App Timing – Delaro	Late Flower				
App Rate – Delaro	355 ml/ac (20 ac/jug)				
App Method - Delaro	Ground				
Harvest Date	August 15, 2018				

PRECIPITATION										
	i May June July At									
Rainfall	41	96	31	4						
Normal	Normal 48		· 71	66						

+ Growing season precipitation (mm)


OVERALL YIELD						
	Mean (bu/ac)					
Priaxor 1 st App + Delaro 2 nd App	80.5					
Priaxor 1st App	77.7					
Yield Difference	2.8					
P-Value	0.2216					
CV	3.3%					
Significance	No					

Delaro 2nd App Priaxor 1st App 84 83 82 81 Yield (bu/ac) 80 79 78 77 76 75 74 1 2 3 Rep

Summary: There was no significant yield difference between a single application of Priaxor applied at first flower and a single application of Priaxor applied at first flower followed by an application of Delaro 13 days later. Rainfall was above normal for the month of June but below normal for the remainder of the growing season. There was no replicated untreated check within this trial.

Pulse Soybean

T 204 745.6488 www.manitobapulse.ca

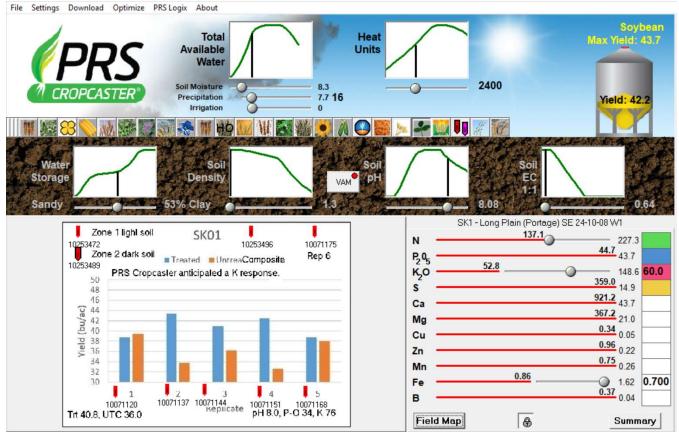
STRIP YIELD

The objective of this study was to quantify the agronomic and economic impacts of potassium fertilizer on soybean fields with <150 ppm soil test K in Manitoba. Potash was applied in a band application in the spring at 60 lbs/ac K_2O and compared to untreated check strips.

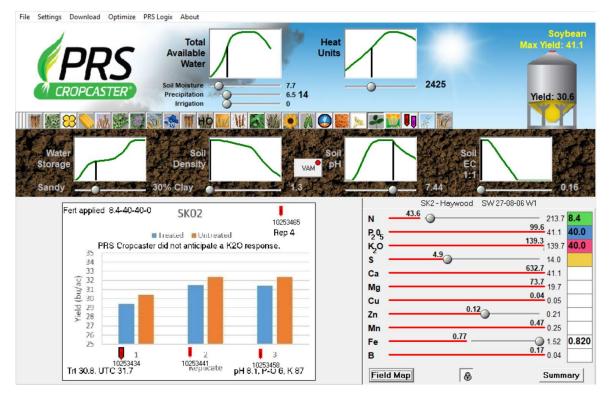
Soybean potassium fertility trial summary targeting fields with a soil test K level of <150 ppm at five On-Farm Network trials across Manitoba in 2018.

Trial ID	Rural Municipality	Placement	Potash Rate	Seeding Date	Yield		Yield	CV	P-Value	Statistically Significant @	Ammonium Accetate soil	PKS* Tech	anticipated
					Treated	Untreated	Difference	-		95%	test K	rate	by PRS® Tech
			lbs/ac K2O		bu/ac		bu/ac	%			ррт К	lb/ac K2O	
SK01	Portage la Prairie	Band	60	May 29	40.8	36.0	4.8	9.1	0.0168	Yes	79	53*	Yes
SK02	Grey	Band	60	May 23	30.8	31.7	-1.0	3.8	0.0012	Yes	87	139	No
SK04	Rockwood	Band	60		43.5	43.6	-0.1	5.5	0.8629	No	216		
SK05	La Broquerie	Band	60	May 17	40.9	40.1	0.8	1.8	0.0503	No	115	79*	Yes
SK07	Swan River	Band	60	May 15	46.9	47.2	-0.3	3.3	0.5769	No	133	323	No

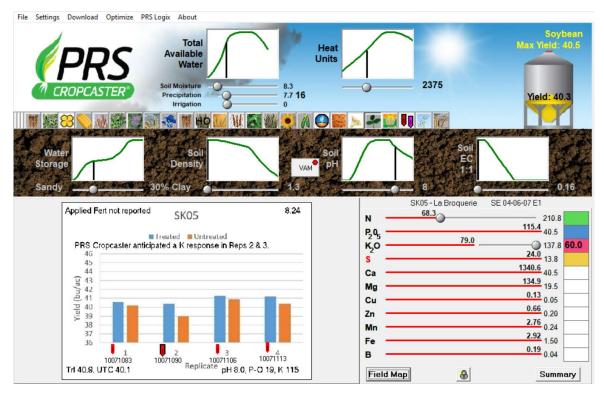
*Differences in K supply rate observed between replicates. A difference in response between replicates anticipated by PRS® Tech.

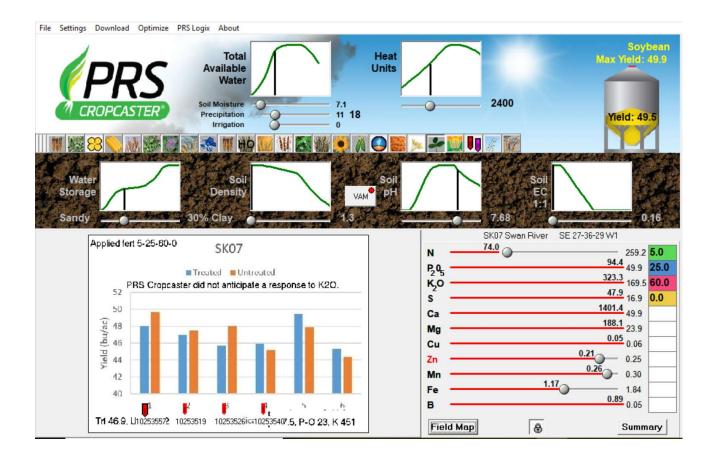


To continue the learnings initiated in 2017, Western Ag Professional Agronomy participated in year two of the Manitoba Pulse and Soybean Growers "On Farm Network" trial investigating soybean response to potassium fertilization.


The following images show the results of a PRS Cropcast[®] utilizing the PRS Cropcaster[®] computer model. Typically, the PRS Cropcaster is for crop planning purposes, looking ahead to the coming growing season. A composite soil sample was collected from each replicate area, for each trial location. Soil sampling was completed prior to treatments being applied in the spring of 2018. The soils were then

analyzed using ion exchange membrane probes (PRS[®] probes). The soil data is then used by the PRS Cropcaster to model soybean crop growth.


What is shown below is the PRS Cropcaster used in a <u>post-harvest</u> assessment. In these reports, approximate available moisture (soil +rain) and corn heat units for the 2018 crop year were entered into the PRS Cropcaster. The field soil characteristics were also entered. The red lines next to the list of nutrients are like fuel gauges of nutrient supply, the longer the line, the greater the soil supply rate. The number above the line indicates that nutrient's soil supply rate in lbs/ac (actual). Please note, this is a nutrient supply rate and not a nutrient concentration.


At 2018-SK1 – Long Plain, the PRS Cropcaster anticipated seeing a potassium response in Replicates 2, 3 and 4. A slightly larger response was anticipated for Rep 5 than was realized in this trial. No response was anticipated for Rep 1. This trial location had some interesting soil characteristics that cut through the trial area. PRS analysis of soils collected by replicate and by additional samples by soil colour could differentiate the potential for potassium response at this trial location.

At SK2 – Haywood, no potassium response was anticipated in any of the replicates. The soil supply rate for potassium was essentially "full" for the crop soybeans.

At SK05 – La Broquerie a potassium response was anticipated at this location though slightly larger than that realized.

At SK07, PRS analysis did not anticipate a response from any of the replicates. The PRS Cropcaster in post-harvest assessment (called a PRS Backcast), anticipated a yield ranging from 45-50 bu/ac.

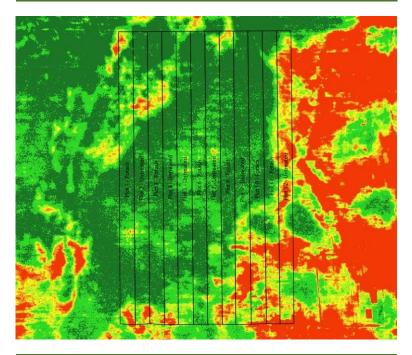
Similar to trial results observed from On-Farm Network Trials in 2017, PRS soil analysis with the PRS Cropcast could predict the potential of a potassium fertilizer response at the trial sites.

Trial ID: 2018-SK01 – R.M. of Portage la Prairie

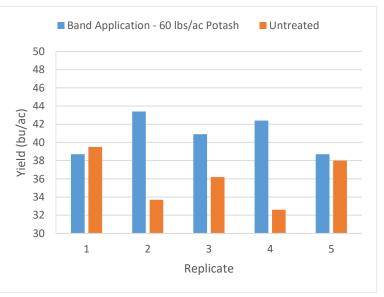
Objective: Quantify the agronomic and economic impacts of potassium fertilizer on soybean fields with <150 ppm soil test K in Manitoba. Potash was applied in a band application in the spring at 60 lbs/ac K_2O and compared to an untreated check.

TRIAL INFORMATION		
TreatmentBand application - 60 lbs K20/a		
Rural Municipality	Portage la Prairie	
Previous Crop	Soybeans	
Soil Description	Very Fine Sandy Loam	
Tillage	Vertical Till	
Planting Date	May 29, 2018	
Variety	Dugaldo	
Row Spacing	15″	
Seeding Rate		
Plant Stand @ V1	101,000 plants/ac	
Harvest Date	October 21, 2018	

SOIL PROPERTIES ^t		
Soil Test Sample Timing	Spring	
Soil K Level	76 ppm	


+ Composite soil sample of the trial area before seeding at 0-6" depth

PRECIPITATION				
May June July Aug				
Rainfall	22	110	39	19
Normal	50	· 79	71	69


+ Growing season precipitation (mm)

OVERALL YIELD		
	Mean (bu/ac)	
Broadcast – 120 lbs/ac Potash	40.8	
Untreated	36.0	
Yield Difference	4.8	
P-Value	0.0168	
CV	9.1%	
Significance	Yes	

NDVI FIELD IMAGE – AUGUST 13, 2018

STRIP YIELD

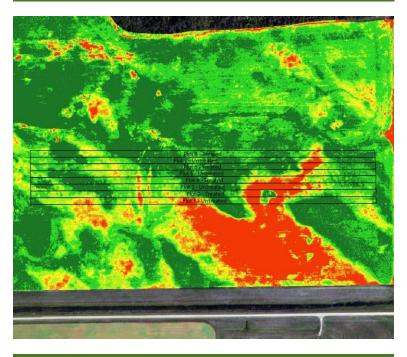
Summary: There was a significant yield difference of 4.8 bu/ac to a band application of potash applied immediately before seeding compared to an untreated check strip. Visual potassium deficiency symptoms were observed in season in the untreated check strips. A spatial analysis of the data by soil zone is recommended to determine if there is a response to potash fertilizer by soil texture.

Trial ID: 2018-SK02 - R.M. of Grey

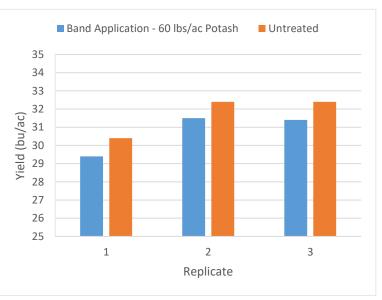
Objective: Quantify the agronomic and economic impacts of potassium fertilizer on soybean fields with <150 ppm soil test K in Manitoba. Potash was applied in a band application in the spring at 60 lbs/ac K_2O and compared to an untreated check.

TRIAL INFORMATION Band application – 60 lbs K₂O/ac Treatment **Rural Municipality** Grey **Previous Crop** Oats **Soil Description** Loamy Fine Sand **Reduced Till** Tillage **Planting Date** May 23, 2018 Variety P007A90R 20" **Row Spacing Seeding Rate** 180,000 seeds/ac Plant Stand @ V1 144,000 plants/ac Harvest Date October 19, 2018

SOIL PROPERTIES [†]		
Soil Test Sample Timing	Spring	
Soil K Level	87 ppm	


+ Composite soil sample of the trial area before seeding at 0-6" depth

PRECIPITATION [†]				
May June July Aug				
Rainfall	39	59	56	23
Normal	58	· 77	. 77	59


+ Growing season precipitation (mm)

OVERALL YIELD		
	Mean (bu/ac)	
Broadcast – 120 lbs/ac Potash	30.8	
Untreated	31.7	
Yield Difference	-0.9	
P-Value	0.0012	
CV	3.8%	
Significance	Yes	

NDVI FIELD IMAGE – AUGUST 13, 2018

STRIP YIELD

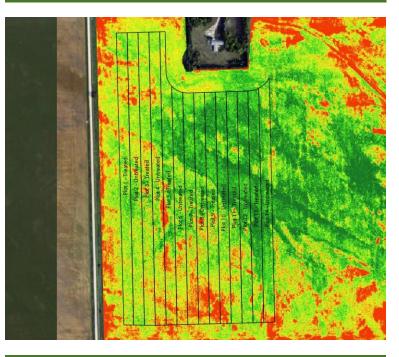
Summary: There was a significant yield difference of -0.9 bu/ac for a band application of potash applied before seeding compared to an untreated check. There were no visual potassium deficiency symptoms observed within this trial. Rainfall was below normal for the entire growing season.

Trial ID: 2018-SK04 – R.M. of Rockwood

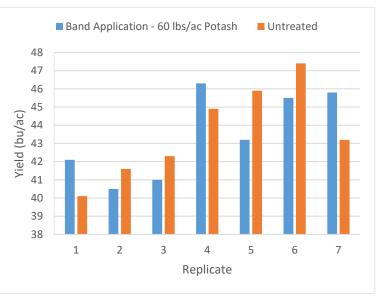
Objective: Quantify the agronomic and economic impacts of potassium fertilizer on soybean fields with <150 ppm soil test K in Manitoba. Potash was applied in a band application in the spring at 60 lbs/ac K_2O and compared to an untreated check.

TRIAL INFORMATION		
Treatment Band application – 60 lbs K ₂ O/ac		
Rural Municipality	Rockwood	
Previous Crop	Corn	
Soil Description	Very Fine Sandy Loam	
Tillage	Reduced	
Planting Date	May 22, 2018	
Variety	S007-Y4	
Row Spacing	10"	
Seeding Rate	185,000 seeds/ac	
Plant Stand @ V1	172,000 plants/ac	
Harvest Date	October 1, 2018	

SOIL PROPERTIES [†]		
Soil Test Sample Timing	Spring	
Soil K Level	216 ppm	


+ Composite soil sample of the trial area before seeding at 0-6" depth

PRECIPITATION [†]				
May i June i July i Aug				
Rainfall	47	90	90	77
Normal	54 <u>54</u>	92	66	63


+ Growing season precipitation (mm)

OVERALL YIELD		
	Mean (bu/ac)	
Broadcast – 120 lbs/ac Potash	43.5	
Untreated	43.6	
Yield Difference	-0.1	
P-Value	0.8629	
CV	5.5%	
Significance	No	

NDVI FIELD IMAGE – AUGUST 13, 2018

STRIP YIELD

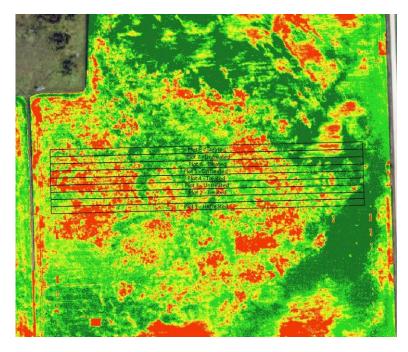
Summary: There was no significant yield difference observed for a band application of potash applied at seeding compared to an untreated check when assessed on a full strip basis. A spring composite soils sample of the trial area resulted in a soil K level of 216 ppm; higher than the target of <150 ppm soil test K. A fall zone soil sample resulted in a soil test K <150 ppm in one zone. A spatial analysis of the data is recommended to determine if there is a response to potash by soil zone.

Trial ID: 2018-SK05 - R.M. of La Broquerie

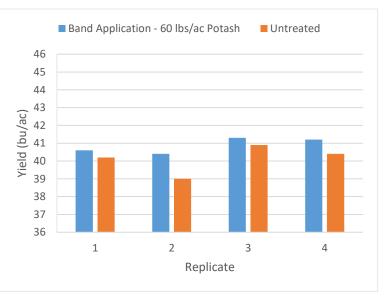
Objective: Quantify the agronomic and economic impacts of potassium fertilizer on soybean fields with <150 ppm soil test K in Manitoba. Potash was applied in a band application in the spring at 60 lbs/ac K_2O and compared to an untreated check.

TRIAL INFORMATION Band application – 60 lbs K₂O/ac Treatment **Rural Municipality** La Broquerie **Previous Crop** Corn **Soil Description** Loamy Fine Sand Tillage **Reduced Till Planting Date** May 17, 2018 Variety Syngenta W5 10" **Row Spacing Seeding Rate** 195,000 seeds/ac Plant Stand @ V1 155,000 plants/ac Harvest Date September 15, 2018

SOIL PROPERTIES ^t		
Soil Test Sample Timing	Spring	
Soil K Level	115 ppm	


+ Composite soil sample of the trial area before seeding at 0-6" depth

PRECIPITATION						
	May June July Aug					
Rainfall	i 59	71	44	84		
Normal	58	91	80	66		


+ Growing season precipitation (mm)

OVERALL YIELD				
	Mean (bu/ac)			
Broadcast – 120 lbs/ac Potash	40.9			
Untreated	40.1			
Yield Difference	0.8			
P-Value	0.0503			
CV	1.8%			
Significance	No			

NDVI FIELD IMAGE – AUGUST 11, 2018

STRIP YIELD

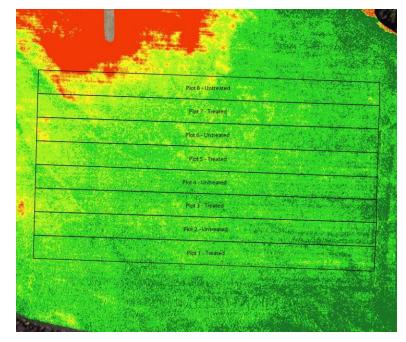
Summary: There was no significant yield difference between potash applied at seeding compared to an untreated check. There were no visual potassium deficiency symptoms observed in season in the trial. Rainfall was near normal for the growing season.

Trial ID: 2018-SK07 – R.M. of Swan River

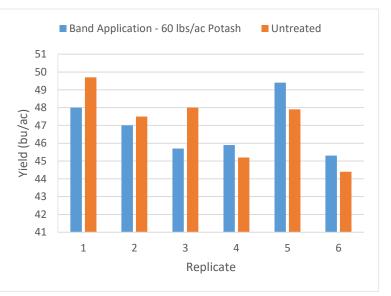
Objective: Quantify the agronomic and economic impacts of potassium fertilizer on soybean fields with <150 ppm soil test K in Manitoba. Potash was applied in a band application in the spring at 60 lbs/ac K_2O and compared to an untreated check.

TRIAL INFORMATION Band application – 60 lbs K₂O/ac Treatment **Rural Municipality** Swan River **Previous Crop** Canola **Soil Description** Clay Loam Tillage Conventional **Planting Date** May 15, 2018 Variety Torro R2 12″ **Row Spacing Seeding Rate** ---Plant Stand @ V1 146,000 plants/ac Harvest Date

SOIL PROPERTIES [†]		
Soil Test Sample Timing	Fall	
Soil K Level	133 ppm	


+ Composite soil sample of the trial area before seeding at 0-6" depth

PRECIPITATION						
	May June July Aug					
Rainfall	60	113	76	47		
Normal	45 <u>45</u>	. 84	86	68		


+ Growing season precipitation (mm)

OVERALL YIELD				
	Mean (bu/ac)			
Broadcast – 120 lbs/ac Potash	46.9			
Untreated	47.2			
Yield Difference	-0.3			
P-Value	0.5769			
CV	3.3%			
Significance	No			

NDVI FIELD IMAGE – AUGUST 15, 2018

STRIP YIELD

Summary: There was no significant yield response to potash applied at seeding and an untreated check. Visual potassium deficiency symptoms were observed in a small area of light textured soils in the northwest corner of the field, but not observed in the majority of the trial area. Rainfall was near normal for the entire growing season.

The objective of this study was to quantify the agronomic and economic impacts of seed treatment in soybean fields. Either a fungicide seed treatment or a fungicide + insecticide seed treatment was compared to untreated check strips.

Trial ID	Rural	Seeding	Seeding	Plant Sta	and @ V1	Yield Yield		CV P-Value		Statistically Significant	
	Municipality	Date	Rate	Treated	Untreated	Treated	Untreated	Difference			@ 95%
			'000/ac	'00	0/ac	bu	/ac	bu/ac	%		
SST01	Grey	May 8	160	146	143	29.3	29.4	-0.1	2.2	0.7646	No
SST02	Hanover	May 8	165	124	133	44.2	43.8	0.4	2.6	0.2552	No
SST03	De Salaberry	May 8	175	145	141	41.4	41.6	-0.2	3.4	0.8752	No
SST04	Morris	May 9	190	139	146	28.2	29.8	-1.6	5.1	0.0259	Yes
SST05	St. Clements	May 14	183	147	172	36.6	36.3	0.3	3.4	0.4658	No
SST06	Grey	May 17	175	145	124	39.1	39.3	-0.2	5.2	0.8007	No
SST07	Gilbert Plains	May 23	195	166	165	44.3	43.7	0.7	2.3	0.0029	Yes
SST09	Ste. Rose	May 22	180	122	145	38.9	38.4	0.5	6.7	0.4884	No

Soybean seed treatment trial summary for eight On-Farm Network trials across Manitoba in 2018.

Trial ID: 2018-SST01 – R.M. of Grey

Objective: Quantify the agronomic and economic impacts of a seed treatment in soybean fields. A fungicide seed treatment was compared to an untreated check strip.

TRIAL INFORMATION			
Treatment	EverGol Energy		
Rural Municipality	Grey		
Previous Crop	Winter Wheat		
Soil Description	Clay		
Tillage	Conventional		
Planting Date	May 8, 2018		
Variety	24-10RY		
PRR Gene	Rps 1k		
Row Spacing	20"		
Seeding Rate	160,000 seeds/ac		
Plant Stand @V1 (With)	146,000 plants/ac		
Plant Stand @V1 (W/O)	143,000 plants/ca		
Harvest Date	September 19, 2018		
With = Treated, W/O = Untreated,	, PRR = Phytophthora Root Rot		

PRECIPITATION

June

70

81

OVERALL YIELD

July

41

66

Mean (bu/ac)

29.3

29.4

- 0.1

0.7646

2.2%

No

Aug

22

71

May

29

54

+ Growing season precipitation (mm)

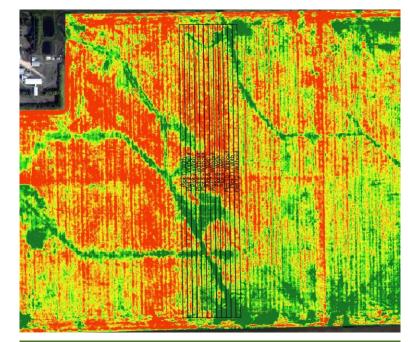
1

EverGol Energy

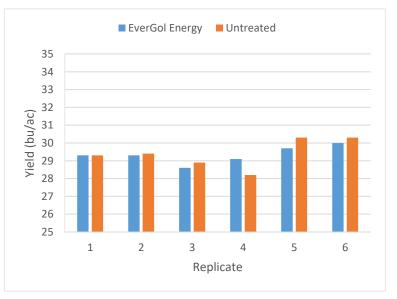
Yield Difference

Untreated

P-Value


Significance

CV


Rainfall

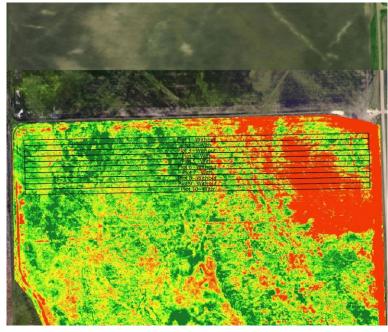
Normal

NDVI FIELD IMAGE – AUGUST 13, 2018

STRIP YIELD

Summary: There was no significant yield difference between EverGol Energy seed treatment and untreated check strips. That plant stand at growth stage V1 (first trifoliate) was not significantly different between treatments, and no early season root disease was observed.

MANITORA

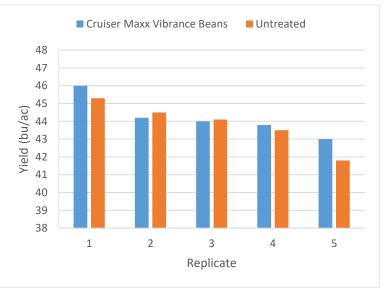


Trial ID: 2018-SST02 - R.M. of Hanover

Objective: Quantify the agronomic and economic impacts of a seed treatment in soybean fields. A fungicide and insecticide seed treatment was compared to an untreated check strip.

TRIAL INFORMATION **Cruiser Maxx Vibrance Beans** Treatment **Rural Municipality** Hanover **Previous Crop** Corn **Soil Description** Very Fine Sandy Loam Conventional Tillage **Planting Date** May 8, 2018 Variety P007A90R **PRR Gene** Rps 1c **Row Spacing** 30" **Seeding Rate** 165,000 seeds/ac Plant Stand @V1 (With) 124,000 plants/ac Plant Stand @V1 (W/O) 133,000 plants/ac **Harvest Date** September 4, 2018

NDVI FIELD IMAGE – AUGUST 11, 2018


PRECIPITATION					
	i May	June	July	i Aug	
Rainfall	41	61	64	54	
Normal	58	90	81	72	

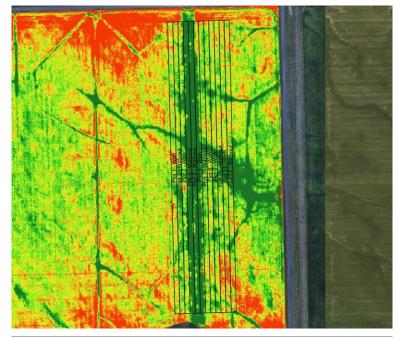
With = Treated, W/O = Untreated, PRR = Phytophthora Root Rot

+ Growing season precipitation (mm)

OVERALL YIELD				
	Mean (bu/ac)			
Cruise Maxx Vibrance Beans	44.2			
Untreated	43.8			
Yield Difference	0.4			
P-Value	0.2552			
cv	2.6%			
Significance	No			

STRIP YIELD

Summary: There was no significant yield difference between Cruiser Maxx Vibrance Beans seed treatment and untreated check strips. That plant stand at growth stage V1 (first trifoliate) was not significantly different between treatments, and no early season root disease was observed.

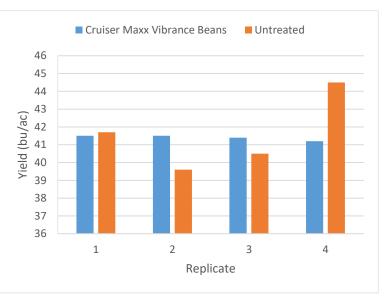


Trial ID: 2018-SST03 - R.M. of De Salaberry

Objective: Quantify the agronomic and economic impacts of a seed treatment in soybean fields. A fungicide and insecticide seed treatment was compared to an untreated check strip.

TRIAL INFORMATION			
Treatment Cruiser Maxx Vibrance Beans			
Rural Municipality De Salaberry			
Previous Crop	Oats		
Soil Description	Clay		
Tillage	Conventional		
Planting Date	May 8, 2018		
Variety	25-10RY		
PRR Gene	Rps 1c		
Row Spacing	15″		
Seeding Rate	175,000 seeds/ac		
Plant Stand @V1 (With)	Vith) 145,000 plants/ac		
Plant Stand @V1 (W/O)	141,000 plants/ac		
Harvest Date September 9, 2018			

NDVI FIELD IMAGE – AUGUST 13, 2018


PRECIPITATION[†] May June July Aug Rainfall 45 68 34 39 Normal 53 95 70 52 ı I

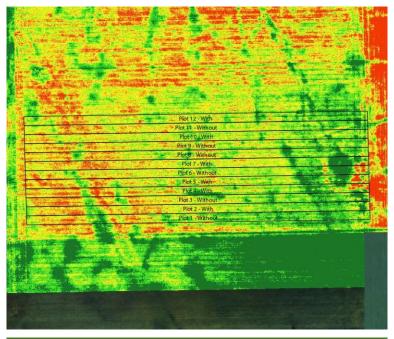
With = Treated, W/O = Untreated, PRR = Phytophthora Root Rot

+ Growing season precipitation (mm)

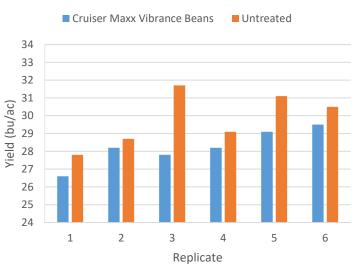
OVERALL YIELD				
	Mean (bu/ac)			
Cruiser Maxx Vibrance Beans	41.4			
Untreated	41.6			
Yield Difference	- 0.2			
P-Value	0.8752			
cv	3.4%			
Significance	No			

STRIP YIELD

Summary: There was no significant yield difference between Cruiser Maxx Vibrance Beans seed treatment and untreated check strips. That plant stand at growth stage V1 (first trifoliate) was not significantly different between treatments, and no early season root disease was observed.



Trial ID: 2018-SST04 - R.M. of Morris


Objective: Quantify the agronomic and economic impacts of a seed treatment in soybean fields. A fungicide and insecticide seed treatment was compared to an untreated check strip.

TRIAL INFORMATION **Cruiser Maxx Vibrance Beans** Treatment **Rural Municipality** Morris Spring Wheat **Previous Crop Soil Description** Clay Conventional Tillage **Planting Date** May 9, 2018 Variety S008-N2 **PRR Gene** ----15″ **Row Spacing Seeding Rate** 190,000 seeds/ac Plant Stand @V1 (With) 139,000 plants/ac Plant Stand @V1 (W/O) 146,000 plants/ac **Harvest Date** September 19, 2018 With = Treated, W/O = Untreated, PRR = Phytophthora Root Rot

NDVI FIELD IMAGE – AUGUST 13, 2018

STRIP YIELD

May June July Aug Rainfall 28 85 38 27 Normal 54 86 72 65 1 + Growing season precipitation (mm)

PRECIPITATION⁺

OVERALL YIELD				
	Mean (bu/ac)			
Cruiser Maxx Vibrance Beans	28.2			
Untreated	29.8			
Yield Difference	- 1.6			
P-Value	0.0259			
cv	5.1%			
Significance	Yes			

Summary: There was a significant yield difference of -1.6 bu/ac between Cruiser Maxx Vibrance Beans seed treatment and untreated check strips. That plant stand at growth stage V1 (first trifoliate) was not significantly different between treatments, and no early season root disease was observed.

Trial ID: 2018-SST05 - R.M. of St. Clements

Objective: Quantify the agronomic and economic impacts of a seed treatment in soybean fields. A fungicide seed treatment was compared to an untreated check strip.

TRIAL INFORMATION			
Treatment	EverGol Energy		
Rural Municipality	St. Clements		
Previous Crop	Spring Wheat		
Soil Description	Clay		
Tillage	Conventional		
Planting Date	May 14, 2018		
Variety	24-10RY		
PRR Gene	Rps 1k		
Row Spacing	10"		
Seeding Rate	183,000 seeds/ac		
Plant Stand @V1 (With)	147,000 plants/ac		
Plant Stand @V1 (W/O)	172,000 plants/ac		
Harvest Date	September 30, 2018		
With = Treated, W/O = Untreated,	, PRR = Phytophthora Root Rot		

PRECIPITATION

June

120

90

OVERALL YIELD

July

25

73

I

Mean (bu/ac)

36.6

36.3

0.3

0.4658

3.4%

No

Aug

45

73

May

53

54

+ Growing season precipitation (mm)

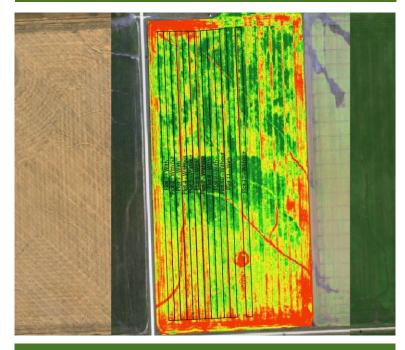
1

EverGol Energy

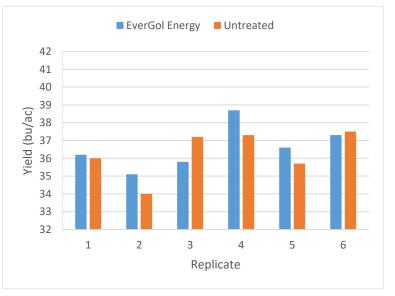
Yield Difference

Untreated

P-Value


Significance

CV


Rainfall

Normal

NDVI FIELD IMAGE – AUGUST 13, 2018

STRIP YIELD

Summary: There was no significant yield difference between EverGol Energy seed treatment and untreated check strips. That plant stand at growth stage V1 (first trifoliate) was not significantly different between treatments, and no early season root disease was observed.

" Pulse Soybean

Trial ID: 2018-SST06 - R.M. of Grey

Objective: Quantify the agronomic and economic impacts of a seed treatment in soybean fields. A fungicide seed treatment was compared to an untreated check strip.

TRIAL INFORMATION Treatment **EverGol Energy Rural Municipality** Grey **Previous Crop** Corn **Soil Description** Loamy Fine Sand Tillage Conventional **Planting Date** May 17, 2018 Variety DKB005-52 **PRR Gene** Rps 1c **Row Spacing** 30" **Seeding Rate** 175,000 seeds/ac Plant Stand @V1 (With)[†] 145,000 plants/ac Plant Stand @V1 (W/O) 124,000 plants/ac **Harvest Date** October 17, 2018

‡ Statistically higher plant stand vs. untreated

May

29

54

+ Growing season precipitation (mm)

1

EverGol Energy

Yield Difference

Untreated

P-Value

Significance

CV

Rainfall

Normal

With = Treated, W/O = Untreated, PRR = Phytophthora Root Rot

PRECIPITATION⁺

June

70

81

OVERALL YIELD

July

41

66

Mean (bu/ac)

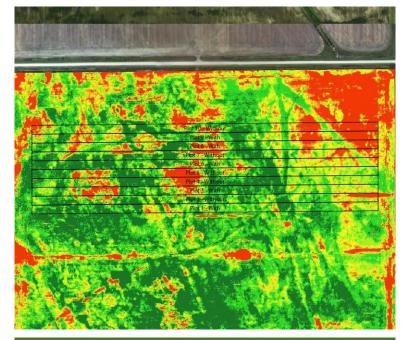
39.1

39.3

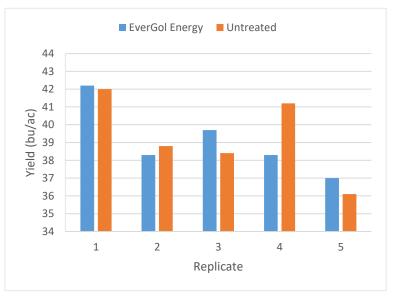
- 0.2

0.8007

5.2%


No

Aug


22

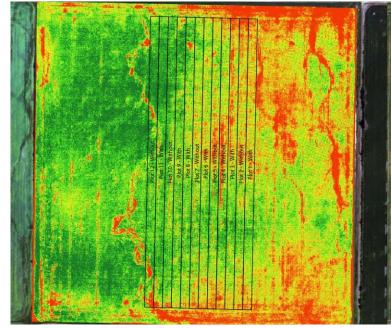
71

NDVI FIELD IMAGE – AUGUST 13, 2018

STRIP YIELD

Summary: There was no significant yield difference between EverGol Energy seed treatment and untreated check strips. That plant stand at growth stage V1 (first trifoliate) was significantly higher for soybeans treated with EverGol Engery, and no early season root disease was observed.

49

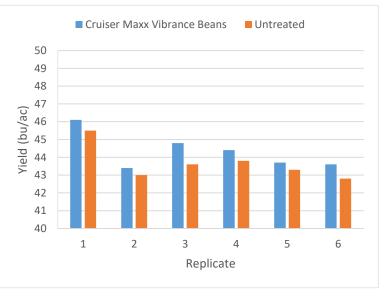


Trial ID: 2018-SST07 – R.M. of Gilbert Plains

Objective: Quantify the agronomic and economic impacts of a seed treatment in soybean fields. A fungicide and insecticide seed treatment was compared to an untreated check strip.

TRIAL INFORMATION			
Treatment Cruiser Maxx Vibrance Beans			
Rural Municipality Gilbert Plains			
Previous Crop	Canola		
Soil Description	Loam to Clay Loam		
Tillage	No-Till		
Planting Date	May 23, 2018		
Variety	22-60RY		
PRR Gene	Rps 1c		
Row Spacing	9.8″		
Seeding Rate	195,000 seeds/ac		
Plant Stand @V1 (With)	166,000 plants/ac		
Plant Stand @V1 (W/O)	165,000 plants/ac		
Harvest Date	October 19, 2018		

NDVI FIELD IMAGE – AUGUST 16, 2018


PRECIPITATION					
	May	June	i July	i Aug	
Rainfall	48	100	60	7	
Normal	_ 54	87	73	63	

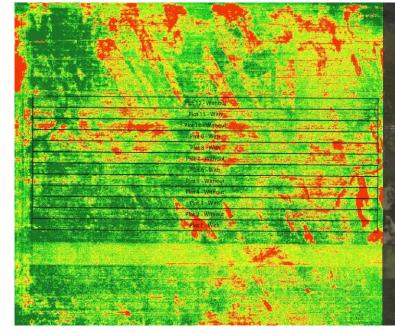
With = Treated, W/O = Untreated, PRR = Phytophthora Root Rot

+ Growing season precipitation (mm)

OVERALL YIELD			
	Mean (bu/ac)		
Cruiser Maxx Vibrance Beans	44.3		
Untreated	43.7		
Yield Difference	0.6		
P-Value	0.0029		
CV	2.3%		
Significance	Yes		

STRIP YIELD

Summary: There was a significant yield difference of 0.6 bu/ac between Cruiser Maxx Vibrance Beans seed treatment and untreated check strips. That plant stand at growth stage V1 (first trifoliate) was not significantly difference between treatments. Fusarium root rot was present at growth stage V1 in all treatments.

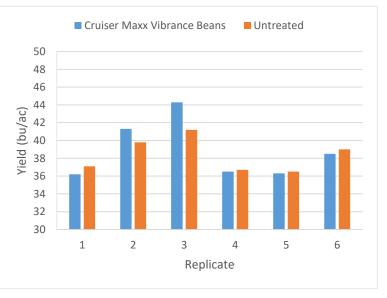


Trial ID: 2018-SST09 - R.M. of Ste. Rose

Objective: Quantify the agronomic and economic impacts of a seed treatment in soybean fields. A fungicide and insecticide seed treatment was compared to an untreated check strip.

TRIAL INFORMATION **Cruiser Maxx Vibrance Beans** Treatment **Rural Municipality** Ste. Rose **Previous Crop** Canola **Soil Description** Very Fine Sandy Loam Conventional Tillage **Planting Date** May 22, 2018 Variety Notus R2 **PRR Gene** Rps 1c **Row Spacing** 20" **Seeding Rate** 180,000 seeds/ac Plant Stand @V1 (With) 122,000 plants/ac Plant Stand @V1 (W/O) 145,000 plants/ac **Harvest Date** October 12, 2018 With = Treated, W/O = Untreated, PRR = Phytophthora Root Rot

NDVI FIELD IMAGE – AUGUST 9, 2018



PRECIPITATION [†]						
	i May	June	July	Aug		
Rainfall	44	52	71	14		
Normal	54	87	73	63		

+ Growing season precipitation (mm)

OVERALL YIELD				
	Mean (bu/ac)			
Cruiser Maxx Vibrance Beans	38.9			
Untreated	38.4			
Yield Difference	0.5			
P-Value	0.4884			
cv	6.7%			
Significance	No			

Summary: There was no significant yield difference between Cruiser Maxx Vibrance Beans seed treatment and untreated check strips. That plant stand at growth stage V1 (first trifoliate) was not significantly difference between treatments, and no early season root disease was observed.

The objective of this study was to quantify the agronomic and economic impacts of foliar fungicide in soybean fields. A single application of fungicide was compared to untreated check strips.

Soybean foliar fungicide trial summary for nine On-Farm Network trials across Manitoba in 2018.

Trial ID	Rural	Previous Crop	Seeding	Row Stand @		ROW	•	Yi	eld	Yield	cv	P-Value	Statistically
	Municipality	· · · · · · ·	Date	Spacing	Harvest	Treated	Untreated	Difference			Significant @ 95%		
				inch	'000/ac	bu	/ac	bu/ac	%				
SF01	Grey	Winter Wheat	May 8	20	139	32.5	32.4	0.1	5.9	0.9286	No		
SF02	Dauphin	Canola	May 16	12	155	46.3	49.0	-2.7	4.8	0.0468	Yes		
SF03	Glenella Lansdwone	Winter Wheat		10	150	33.3	33.6	-0.3	5.5	0.7317	No		
SF04	Glenboro South Cypress	Corn	May 16	15	141	34.7	35.0	-0.3	3.5	0.6205	No		
SF05	Dufferin	Oats	May 15	20	155	22.3	22.8	-0.4	2.0	0.0772	No		
SF06	St. Andrews	Spring Wheat	May 15	10	141	42.7	41.7	1.0	2.8	0.0394	Yes		
SF07	Macdonald	Corn	May 11	20	151	31.5	31.8	-0.3	1.9	0.4110	No		
SF08	La Broquerie	Corn	May 22	10	203	41.5	40.4	1.1	4.5	0.0051	Yes		
SF09	Westlake Gladstone	Winter Wheat	May 8	10	161	30.9	31.4	-0.5	6.6	0.6574	No		

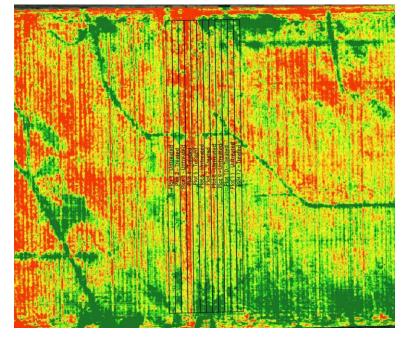
Trial ID: 2018-SF01 - R.M. of Grey

Objective: Quantify the agronomic and economic impacts of foliar fungicide in soybean fields. A single application of Delaro was compared to an untreated check.

TRIAL INFORMATION				
Treatment	Delaro vs. Untreated			
Rural Municipality	Grey			
Previous Crop	Winter Wheat			
Soil Texture	Clay			
Tillage	Conventional			
Planting Date	May 8, 2018			
Variety	24-10RY			
Row Spacing	20"			
Plant Stand @ Harvest	139,000 plants/ac			
Application Date	June 30, 2018			
Application Timing	R1 – first flower			
Application Rate	230 mL/ac			
Harvest Date	September 19, 2018			

PRECIPITATION					
	i May	June	July	Aug	
Rainfall	29	70	41	22	
Normal	54	81	66	71	

+ Growing season precipitation (mm)


DISEASE RATING @ GROWTH STAGE R6⁺

	White Mold	Brown Spot	
Delaro	0	0	
Untreated	0	0	
P-Value	n/a	n/a	
Significance	n/a	n/a	
+ Rated on a scale of 0-5 for severity (0 = no disease, 5 = full infection)			

OVERALL YIELD

	Mean (bu/ac)
Delaro	32.5
Untreated	32.4
Yield Difference	0.1
P-Value	0.9286
CV	5.9%
Significance	No

NDVI FIELD IMAGE – AUG 13, 2018

Summary: There was no significant yield difference between a single application of Delaro and untreated check strips applied at R1 (first flower). Rainfall was below normal for the entire growing season and disease pressure was low.

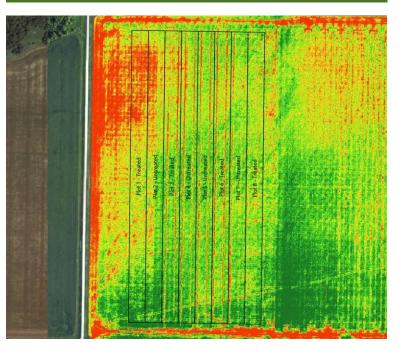
Trial ID: 2018-SF02 - R.M. of Dauphin

Objective: Quantify the agronomic and economic impacts of foliar fungicide in soybean fields. A single application of Delaro was compared to an untreated check.

TRIAL INFORMATION			
Treatment	Cotegra vs. Untreated		
Rural Municipality	Dauphin		
Previous Crop	Canola		
Soil Texture	Loam to Clay - Loam		
Tillage	Conventional		
Planting Date	May 16, 2018		
Variety	Notus R2		
Row Spacing	12"		
Plant Stand @ Harvest	155,000 plants/ac		
Application Date	July 11, 2018		
Application Timing	R2 – full flower		
Application Rate	280 mL/ac		
Harvest Date	September 13, 2018		

PRECIPITATION ⁺				
	i May	June	i July	Aug
Rainfall	i <u>38</u>	104	91	3
Normal	54	! 87	73	63

+ Growing season precipitation (mm)


DISEASE RATING @ GROWTH STAGE R6⁺


	White Mold	Brown Spot
Cotegra	0	1.2
Untreated	0	1.4
P-Value	n/a	0.5796
Significance	n/a	No
+ Rated on a scale of 0-5 for severity (0 = no disease, 5 = full infection)		

OVERALL YIELD

	Mean (bu/ac)
Cotegra	46.3
Untreated	49.0
Yield Difference	- 2.6
P-Value	0.0468
CV	4.8%
Significance	Yes

NDVI FIELD IMAGE – AUG 9, 2018

Summary: There was a significant yield difference of -2.6 bu/ac between a single application of Cotegra and untreated check strips applied at R2 (full flower). Rainfall was at or above normal during June and July as soybeans entered the reproductive phase. Disease pressure was low and there is no clear indication of why there was a negative yield response observed at this site.

MPSG would like to thank BASF for providing the chemical for this trial and Tone Ag Consulting for research support

Trial ID: 2018-SF03 – R.M. of Glenella-Lansdowne

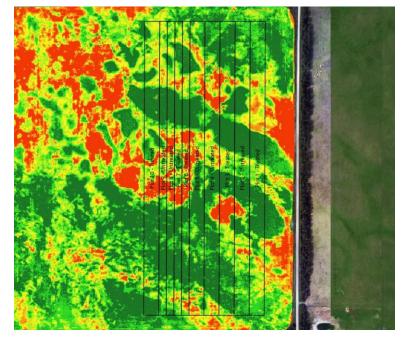
Objective: Quantify the agronomic and economic impacts of foliar fungicide in soybean fields. A single application of Delaro was compared to an untreated check.

TRIAL INFORMATION

Treatment	Cotegra vs. Untreated
Rural Municipality	Glenella-Lansdowne
Previous Crop	Winter Wheat
Soil Texture	Loamy Fine Sand
Tillage	Conventional
Planting Date	
Variety	P007A90R
Row Spacing	10"
Plant Stand @ Harvest	150,000 plants/ac
Application Date	July 3, 2018
Application Timing	R1 – first flower
Application Rate	280 mL/ac
Harvest Date	October 19, 2018

PRECIPITATION				
	May	June	July	Aug
Rainfall	46	42	67	37
Normal	50	· 77	62	64

+ Growing season precipitation (mm)


DISEASE RATING @ GROWTH STAGE R6⁺

	White Mold	Brown Spot
Cotegra	0	0
Untreated	0	0
P-Value	n/a	n/a
Significance	n/a	n/a
+ Rated on a scale of 0-5 for severity (0 = no disease, 5 = full infection)		

OVERALL YIELD

	Mean (bu/ac)
Cotegra	33.3
Untreated	33.6
Yield Difference	- 0.3
P-Value	0.7317
CV	5.5%
Significance	Νο

NDVI FIELD IMAGE – AUG 11, 2018

Cotegra Untreated 38 37 36 35 Yield (bu/ac) 34 33 32 31 30 29 28 2 3 1 4 Replicate

STRIP YIELD

Summary: There was no significant yield difference between a single application of Cotegra and untreated check strips applied at R1 (first flower). Rainfall was below normal for the entire growing season and disease pressure was low.

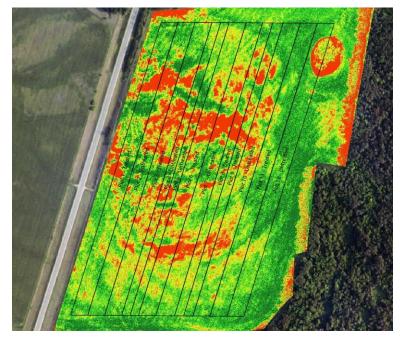
Trial ID: 2018-SF04 – R.M. of Glenboro-South Cypress

Objective: Quantify the agronomic and economic impacts of foliar fungicide in soybean fields. A single application of Delaro was compared to an untreated check.

TRIAL INFORMATION		
Treatment	Priaxor vs. Untreated	
Rural Municipality	Glenboro-South Cypress	
Previous Crop	Corn	
Soil Texture	Silty Clay Loam	
Tillage		
Planting Date	May 16, 2018	
Variety	24-10RY	
Row Spacing	15"	
Plant Stand @ Harvest	141,000 plants/ac	
Application Date	July 6, 2018	
Application Timing	R2 – full flower	
Application Rate	180 mL/ac	
Harvest Date	September 10, 2018	

PRECIPITATION				
May June July Aug				Aug
Rainfall	i 39	i 58	62	21
Normal	54	76	75	66

+ Growing season precipitation (mm)


DISEASE RATING @ GROWTH STAGE R6⁺

	White Mold	Brown Spot
Priaxor	0	0
Untreated	0	0
P-Value	n/a	n/a
Significance	n/a	n/a
+ Rated on a scale of 0-5 for severity (0 = no disease, 5 = full infection)		

OVERALL YIELD

	Mean (bu/ac)
Priaxor	34.7
Untreated	35.0
Yield Difference	- 0.3
P-Value	0.6205
CV	3.5%
Significance	No

NDVI FIELD IMAGE – AUG 10, 2018

Summary: There was no significant yield difference between a single application of Priaxor and untreated check strips applied at R2 (full flower). Rainfall was below normal for the entire growing season and disease pressure was low.

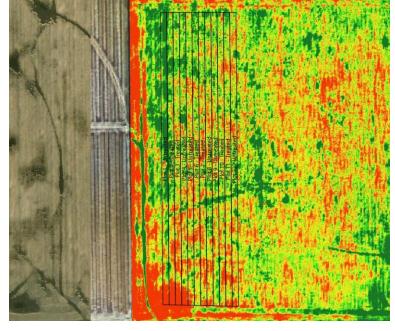
Trial ID: 2018-SF05 - R.M. of Dufferin

Objective: Quantify the agronomic and economic impacts of foliar fungicide in soybean fields. A single application of Delaro was compared to an untreated check.

TRIAL INFORMATION		
Treatment	Delaro vs. Untreated	
Rural Municipality	Dufferin	
Previous Crop	Oats	
Soil Texture	Clay	
Tillage	Conventional	
Planting Date	May 15, 2018	
Variety	TH 88007R2X	
Row Spacing	20"	
Plant Stand @ Harvest	155,000 plants/ac	
Application Date	July 3, 2018	
Application Timing	R2 – full flower	
Application Rate	230 mL/ac	
Harvest Date	September 18, 2018	

PRECIPITATION				
May June July Aug				
Rainfall	29	70	41	22
Normal	 ! 54	81	66	71

+ Growing season precipitation (mm)


DISEASE RATING @ GROWTH STAGE R6⁺

	White Mold	Brown Spot
Delaro	0	0
Untreated	0	0
P-Value	n/a	n/a
Significance n/a n/a		
+ Rated on a scale of 0-5 for severity (0 = no disease, 5 = full infection)		

OVERALL YIELD

	Mean (bu/ac)
Delaro	22.3
Untreated	22.8
Yield Difference	- 0.5
P-Value	0.0772
CV	2.0%
Significance	Νο

NDVI FIELD IMAGE – AUG 13, 2018

Summary: There was no significant yield difference between a single application of Delaro and untreated check strips applied at R2 (full flower). Rainfall was below normal for the entire growing season and disease pressure was low.

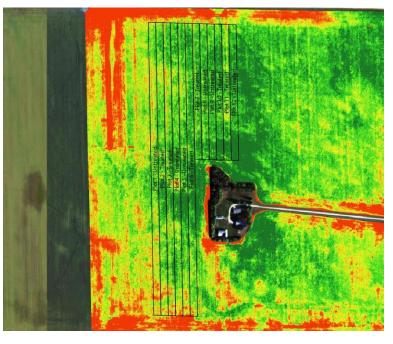
Trial ID: 2018-SF06 - R.M. of St. Andrews

Objective: Quantify the agronomic and economic impacts of foliar fungicide in soybean fields. A single application of Delaro was compared to an untreated check.

TRIAL INFORMATION		
Treatment	Delaro vs. Untreated	
Rural Municipality	St. Andrews	
Previous Crop	Spring Wheat	
Soil Texture	Clay	
Tillage	Conventional	
Planting Date	May 15, 2018	
Variety	P007A90R	
Row Spacing	10"	
Plant Stand @ Harvest	141,000 plants/ac	
Application Date	July 9, 2018	
Application Timing	R2 – full flower	
Application Rate	230 mL/ac	
Harvest Date	October 1, 2018	

PRECIPITATION				
May i June i July i Aug				Aug
Rainfall	37	70	52	78
Normal	 ! 54	92	66	63

+ Growing season precipitation (mm)


DISEASE RATING @ GROWTH STAGE R6⁺

	White Mold	Brown Spot
Delaro	0	1
Untreated	0	1
P-Value	n/a	n/a
Significance	n/a	n/a
+ Rated on a scale of 0-5 for severity (0 = no disease, 5 = full infection)		

OVERALL YIELD

	Mean (bu/ac)
Delaro	42.7
Untreated	41.7
Yield Difference	1.0
P-Value	0.0394
CV	2.8%
Significance	Yes

NDVI FIELD IMAGE – AUG 16, 2018

Summary: There was a significant yield difference of 1.0 bu/ac between a single application of Delaro and untreated check strips applied at R2 (full flower). Rainfall was slightly below normal for the growing season and disease pressure was low.

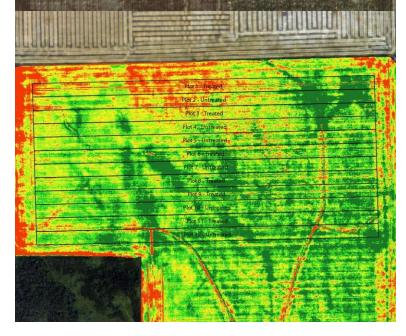
Trial ID: 2018-SF07 – R.M. of Macdonald

Objective: Quantify the agronomic and economic impacts of foliar fungicide in soybean fields. A single application of Delaro was compared to an untreated check.

TRIAL INFORMATION		
Treatment	Cotegra vs. Untreated	
Rural Municipality	Macdonald	
Previous Crop	Corn	
Soil Texture	Clay	
Tillage	Conventional	
Planting Date	May 11, 2018	
Variety	24-12RY	
Row Spacing	20"	
Plant Stand @ Harvest	151,000 plants/ac	
Application Date	July 3, 2018	
Application Timing	R2 – full flower	
Application Rate	280 mL/ac	
Harvest Date	September 7, 2018	

PRECIPITATION				
May June July Aug				
Rainfall	i 59	68	45	25
Normal	59	92		68

+ Growing season precipitation (mm)


DISEASE RATING @ GROWTH STAGE R6⁺

	White Mold	Brown Spot
Cotegra	0	0
Untreated	0	0
P-Value	n/a	n/a
Significance n/a n/a		
+ Rated on a scale of 0-5 for severity (0 = no disease, 5 = full infection)		

OVERALL YIELD

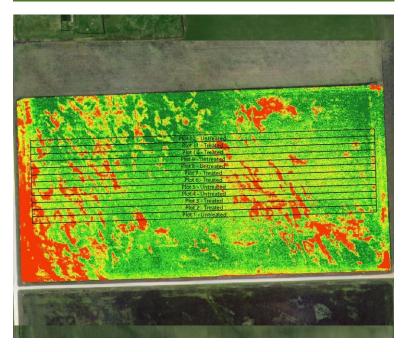
	Mean (bu/ac)
Cotegra	31.5
Untreated	31.8
Yield Difference	- 0.3
P-Value	0.4110
CV	1.9%
Significance	Νο

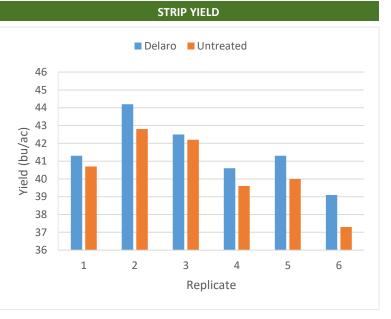
NDVI FIELD IMAGE – AUG 13, 2018

Cotegra Untreated 35 34 33 32 Yield (bu/ac) 31 30 29 28 27 26 25 2 3 5 6 1 4 Replicate

STRIP YIELD

Summary: There was no significant yield difference between a single application of Cotegra and untreated check strips applied at R2 (full flower). Rainfall was below normal for the entire growing season and disease pressure was low.





Trial ID: 2018-SF08 - R.M. of La Broquerie

Objective: Quantify the agronomic and economic impacts of foliar fungicide in soybean fields. A single application of Delaro was compared to an untreated check.

NDVI FIELD IMAGE – AUG 11, 2018

Summary: There was a significant yield difference of 1.1 bu/ac between a single application of Delaro and untreated check strips applied at R2 (full flower). Rainfall was below normal for the entire growing season and disease pressure was low.

TRIAL INFORMATION

Treatment	Delaro vs. Untreated
Rural Municipality	La Broquerie
Previous Crop	Corn
Soil Texture	Loamy Fine Sand
Tillage	Conventional
Planting Date	May 22, 2018
Variety	P007A90R
Row Spacing	10
Plant Stand @ Harvest	203,000 plants/ac
Application Date	July 6, 2018
Application Timing	R2 – full flower
Application Rate	230 mL/ac
Harvest Date	October 19, 2018

PRECIPITATION					
	i May	June	i July	Aug	
Rainfall	42	81	36	30	
Normal	58	91	80	66	

+ Growing season precipitation (mm)

DISEASE RATING @ GROWTH STAGE R6⁺

	White Mold	Brown Spot
Delaro	0	1
Untreated	0	1
P-Value	n/a	n/a
Significance	n/a	n/a
+ Rated on a scale of 0-5 for severity (0 = no disease, 5 = full infection)		

OVERALL YIELD

	Mean (bu/ac)
Delaro	41.5
Untreated	40.4
Yield Difference	1.1
P-Value	0.0051
CV	4.5%
Significance	Yes

Trial ID: 2018-SF09 – R.M. of Westlake-Gladstone

Objective: Quantify the agronomic and economic impacts of foliar fungicide in soybean fields. A single application of Delaro was compared to an untreated check.

I RIAL	INFORMATION

Treatment	Delaro vs. Untreated
Rural Municipality	Westlake-Gladstone
Previous Crop	Winter Wheat
Soil Texture	Clay
Tillage	Conventional
Planting Date	May 8, 2018
Variety	DKB005-52
Row Spacing	10"
Plant Stand @ Harvest	161,000 plants/ac
Application Date	July 3, 2018
Application Timing	R2 – full flower
Application Rate	230 mL/ac
Harvest Date	October 1, 2018

PRECIPITATION				
	i May	June	July	Aug
Rainfall	19	111	39	47
Normal	50	. 79	71	69

+ Growing season precipitation (mm)

DISEASE RATING @ GROWTH STAGE R6⁺

	White Mold	Brown Spot
Delaro	0	0
Untreated	0	0
P-Value	n/a	n/a
Significance	n/a	n/a
+ Rated on a scale of 0-5 for severity (0 = no disease, 5 = full infection)		

OVERALL YIELD

	Mean (bu/ac)
Delaro	30.9
Untreated	31.4
Yield Difference	- 0.5
P-Value	0.6574
CV	6.6%
Significance	No

NDVI FIELD IMAGE – AUG 13, 2018

Summary: There was no significant yield difference between a single application of Delaro and untreated check strips applied at R2 (full flower). Rainfall was below normal for the entire growing season, with the exception of June, and disease pressure was low.

The objective of this study was to quantify the agronomic and economic impacts of seed applied inoculant (single inoculation) vs. no inoculant applied in soybean fields. The trial is conducted in the Central, Eastern and Interlake regions of Manitoba and requires a minimum history of three previous soybean crops, with the most recent soybean crop grown within the past four years.

Soybean inoculant (seed applied inoculant vs. no inoculant) trial summary for 10 On-Farm Network trials across central, eastern and Interlake regions of Manitoba in 2018.

	Rural Seedi		Rural Seeding Nodule Count @ R2		Ŷ	ïeld	Yield			Statistically
Trial ID	I rial ID	Date	Single	Untreated	Single	Untreated	Difference	CV	P-Value	Significant @ 95%
					b	u/ac	bu/ac	%		
S1IN01	Grey	May 8	18	18	26.7	27.0	-0.3	3.2	0.4158	No
S1IN02	Brokenhead	May 9	20	14	39.8	39.9	-0.1	3.5	0.9290	No
S1IN03	Brokenhead	May 14	23	25	40.6	40.9	-0.3	3.6	0.7277	No
S1IN04	St. Clements	May 15	32	30	41.5	41.2	0.3	2.5	0.7119	No
S1IN05	Lac du Bonnet	May 15	17	18	34.6	34.9	-0.3	3.1	0.3711	No
S1IN06	Hanover	May 15	27	32	47.4	47.2	0.2	2.5	0.4560	No
S1IN07	Taché	May 16	27	25	29.7	29.8	-0.1	5.0	0.7316	No
S1IN08	St. Andrews	May 16	27	24	38.2	38.4	-0.2	1.9	0.6549	No

63

Trial ID: 2018-S1In01 – R.M. of Grey

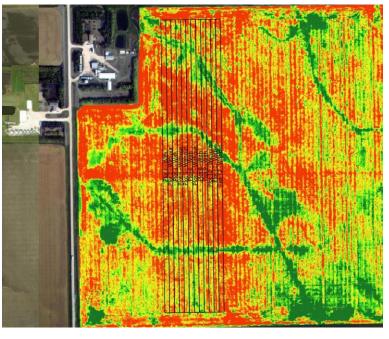
Objective: Quantify the agronomic and economic impacts of seed applied inoculant (single inoculation) vs. no inoculant applied in soybean fields. The trial is conducted in the Central, Eastern and Interlake regions of Manitoba and requires a minimum history of three previous soybean crops.

TRIAL INFORMATION Treatment Seed Applied Inoculant **Rural Municipality** Grey **Previous Crop** Winter Wheat Clay **Soil Description** Tillage Conventional **Planting Date** May 8, 2018 Variety 24-10RY 20" **Row Spacing Seeding Rate** 160,000 seeds/ac Plant Stand @ V1 144,000 plants/ac # of Years since Soy 4 years # of Prev. Soy Crops 2014, 4-5 times in past Harvest Date September 19, 2018

SOIL PROPERTIES				
N 0-24″	ı ı pH	' Salts 0-6"	CCE%	
44 lbs/ac	7.6	0.79	3.5%	

PRECIPITATION				
	May	June	July	Aug
Rainfall	29	70	41	22
Normal 54 81 66 71				
I Growing season precipitation (mm)				

NODULATION COUNT


	Average # of Nodules @ R2
Seed Applied Inoculant	18
No Inoculant	18

OVERALL YIELD

	Mean (bu/ac)
Seed Applied Inoculant	26.7
No Inoculant	27.0
Yield Difference	- 0.3
P-Value	0.4158
CV	3.2%
Significance	Νο

NDVI FIELD IMAGE – AUGUST 13, 2018

64

STRIP YIELD

Seed Applied Inoculant Untreated 32 31 30 29 Yield (bu/ac) 28 27 26 25 24 23 22 2 5 1 3 4 6 Replicate

Summary: There was no significant yield difference between soybeans treated with a single seed applied inoculant vs. no inoculant. Soybeans were well nodulated for both the treated and untreated strips. This trial was established on a field with a history of at least three previous, well nodulated soybean crops and the most recent soybean crop was grown within the past four years.

Trial ID: 2018-S1In02 – R.M. of Brokenhead

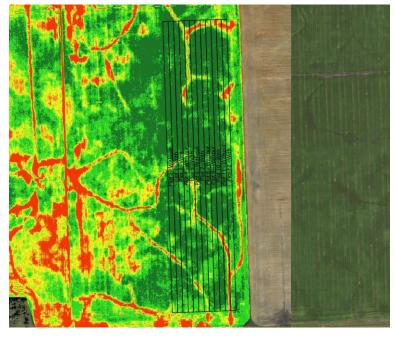
Objective: Quantify the agronomic and economic impacts of seed applied inoculant (single inoculation) vs. no inoculant applied in soybean fields. The trial is conducted in the Central, Eastern and Interlake regions of Manitoba and requires a minimum history of three previous soybean crops.

TRIAL INFORMATION			
Treatment	Seed Applied Inoculant		
Rural Municipality	Brokenhead		
Previous Crop	Wheat		
Soil Description	Clay		
Tillage	Conventional		
Planting Date	May 9, 2018		
Variety S006-W5			
Row Spacing	15"		
Seeding Rate	180,000 seeds/ac		
Plant Stand @ V1	184,000 plants/ac		
# of Years since Soy	3 years		
# of Prev. Soy Crops	2015, 5x in past		
Harvest Date	Date October 1, 2018		

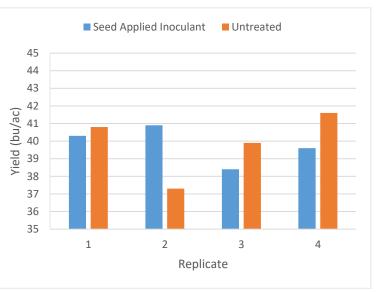
SOIL PROPERTIES			
N 0-24" pH Salts 0-6" CCE%			
9 lbs/ac	8.2	0.88	I

PRECIPITATION					
May June July Aug					
Rainfall	53	120	25	45	
Normal 54 90 73 73					
+ Growing season precipitation (mm)					

NODULATION COUNT


	Average # of Nodules @ R2
Seed Applied Inoculant	20
No Inoculant	14

OVERALL YIELD


	Mean (bu/ac)
Seed Applied Inoculant	39.8
No Inoculant	39.9
Yield Difference	- 0.1
P-Value	0.9290
CV	3.5%
Significance	Νο

NDVI FIELD IMAGE – AUGUST 13, 2018

65

STRIP YIELD

Summary: There was no significant yield difference between soybeans treated with a single seed applied inoculant vs. no inoculant. Soybeans were well nodulated for both the treated and untreated strips. This trial was established on a field with a history of at least three previous, well nodulated soybean crops and the most recent soybean crop was grown within the past four years.

Trial ID: 2018-S1In03 – R.M. of Brokenhead

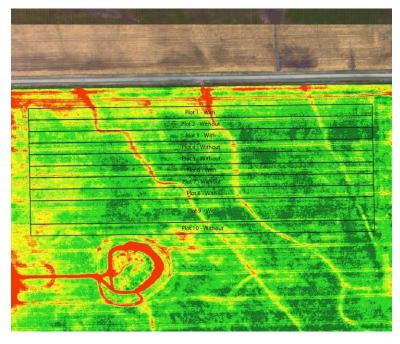
Objective: Quantify the agronomic and economic impacts of seed applied inoculant (single inoculation) vs. no inoculant applied in soybean fields. The trial is conducted in the Central, Eastern and Interlake regions of Manitoba and requires a minimum history of three previous soybean crops.

TRIAL INFORMATION Treatment Seed Applied Inoculant **Rural Municipality** Brokenhead **Previous Crop** Oats **Soil Description** Clay Tillage Conventional Planting Date May 14, 2018 Variety LS Mistral 10″ **Row Spacing Seeding Rate** 190,000 seeds/ac Plant Stand @ V1 166,000 plants/ac # of Years since Soy 2 years # of Prev. Soy Crops 2016, >3x in past **Harvest Date** October 22, 2018

SOIL PROPERTIES				
N 0-24″	CCE%			
38 lbs/ac	8.0	1.29	7.8%	

PRECIPITATION					
May June July Aug					
Rainfall	53	120	25	45	
Normal 1 54 1 90 1 73 1 73					
+ Growing season precipitation (mm)					

NODULATION COUNT


	Average # of Nodules @ R2
Seed Applied Inoculant	23
No Inoculant	25

OVERALL YIELD

	Mean (bu/ac)
Seed Applied Inoculant	40.6
No Inoculant	40.9
Yield Difference	- 0.3
P-Value	0.7277
CV	3.6%
Significance	Νο

NDVI FIELD IMAGE – AUGUST 13, 2018

66

Seed Applied Inoculant Untreated 45 44 43 42 Yield (bu/ac) 41 40 39 38 37 36 35 2 5 1 3 4 Replicate

STRIP YIELD

Summary: There was no significant yield difference between soybeans treated with a single seed applied inoculant vs. no inoculant. Soybeans were well nodulated for both the treated and untreated strips. This trial was established on a field with a history of at least three previous, well nodulated soybean crops and the most recent soybean crop was grown within the past four years.

Trial ID: 2018-S1In04 – R.M. of St. Clements

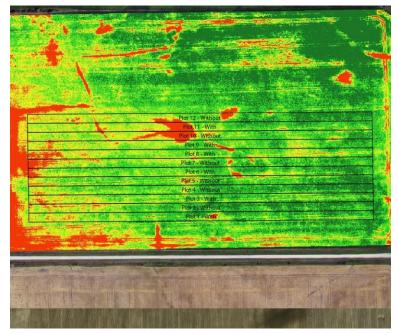
Objective: Quantify the agronomic and economic impacts of seed applied inoculant (single inoculation) vs. no inoculant applied in soybean fields. The trial is conducted in the Central, Eastern and Interlake regions of Manitoba and requires a minimum history of three previous soybean crops.

TRIAL INFORMATION Treatment Seed Applied Inoculant **Rural Municipality** St. Clements **Previous Crop** Spring Wheat **Soil Description** Clay / Loam Tillage Conventional **Planting Date** May 15, 2018 24-10RY Variety 10″ **Row Spacing Seeding Rate** 180,000 seeds/ac Plant Stand @ V1 144,000 plants/ac # of Years since Soy 3 years # of Prev. Soy Crops 2015, 4x in the past **Harvest Date** October 1, 2018

SOIL PROPERTIES				
N 0-24" pH Salts 0-6" CCE				
56 lbs/ac	8.0	1.17	3.1%	

PRECIPITATION				
May June July Aug				
Rainfall	39	93	32	63
Normal 1 54 1 91 1 81 1 74				
+ Growing season precipitation (mm)				

NODULATION COUNT


	Average # of Nodules @ R2
Seed Applied Inoculant	32
No Inoculant	30

OVERALL YIELD

	Mean (bu/ac)
Seed Applied Inoculant	41.5
No Inoculant	41.2
Yield Difference	0.3
P-Value	0.7119
CV	2.5%
Significance	Νο

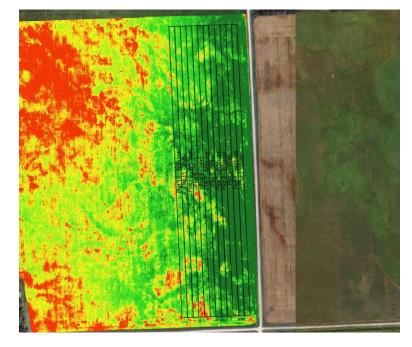
NDVI FIELD IMAGE – AUGUST 13, 2018

67

Seed Applied Inoculant Untreated 45 44 43 42 Yield (bu/ac) 41 40 39 38 37 36 35 1 2 3 4 5 Replicate

STRIP YIELD

Summary: There was no significant yield difference between soybeans treated with a single seed applied inoculant vs. no inoculant. Soybeans were well nodulated for both the treated and untreated strips. This trial was established on a field with a history of at least three previous, well nodulated soybean crops and the most recent soybean crop was grown within the past four years.



68

Trial ID: 2018-S1In05 – R.M. of Lac du Bonnet

Objective: Quantify the agronomic and economic impacts of seed applied inoculant (single inoculation) vs. no inoculant applied in soybean fields. The trial is conducted in the Central, Eastern and Interlake regions of Manitoba and requires a minimum history of three previous soybean crops.

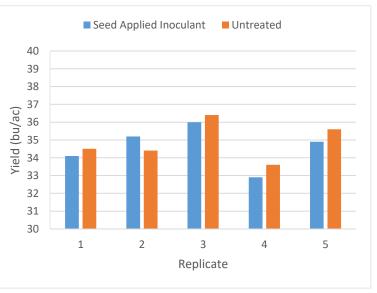
NDVI FIELD IMAGE – AUGUST 13, 2018

Treatment	Seed Applied Inoculant	
Rural Municipality	Lac du Bonnet	
Previous Crop	Corn	
Soil Description	Peat / Very Fine Sandy Loam	
Tillage	Conventional	
Planting Date	May 15, 2018	
Variety	OAC Prudence	
Row Spacing	9"	
Seeding Rate	439,000 seeds/ac	
Plant Stand @ V1	263,000 plants/ac	
# of Years since Soy	2 years	
# of Prev. Soy Crops	2016, >3x in past	
Harvest Date	October 23, 2018	

TRIAL INFORMATION

SOIL PROPERTIES			
N 0-24"	ı ı pH	I Salts 0-6"	CCE%
39 lbs/ac	8.1	0.64	7.8%

PRECIPITATION ⁺					
May June July Aug					
Rainfall	53	120	25	45	
Normal	54	90	73	73	
+ Growing season precipitation (mm)					


NODULATION COUNT

	Average # of Nodules @ R2
Seed Applied Inoculant	17
No Inoculant	18

OVERALL YIELD

	Mean (bu/ac)
Seed Applied Inoculant	34.6
No Inoculant	34.9
Yield Difference	- 0.3
P-Value	0.3711
CV	3.1%
Significance	No

Summary: There was no significant yield difference between soybeans treated with a single seed applied inoculant vs. no inoculant. Soybeans were well nodulated for both the treated and untreated strips. This trial was established on a field with a history of at least three previous, well nodulated soybean crops and the most recent soybean crop was grown within the past four years.

Trial ID: 2018-S1In06- R.M. of Hanover

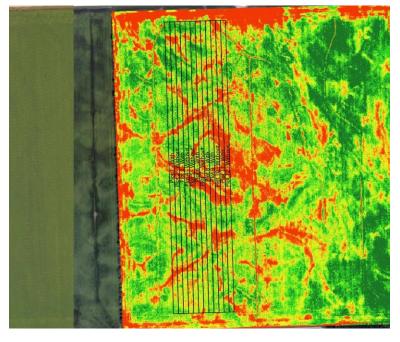
Objective: Quantify the agronomic and economic impacts of seed applied inoculant (single inoculation) vs. no inoculant applied in soybean fields. The trial is conducted in the Central, Eastern and Interlake regions of Manitoba and requires a minimum history of three previous soybean crops.

TRIAL INFORMATION Treatment Seed Applied Inoculant **Rural Municipality** Hanover **Previous Crop** Canola **Soil Description** Clay Tillage Conventional Planting Date May 15, 2018 23-60RY Variety 10″ **Row Spacing Seeding Rate** 210,000 seeds/ac Plant Stand @ V1 183,000 plants/ac # of Years since Soy 2 years # of Prev. Soy Crops 2016, >3x in past **Harvest Date** September 11, 2018

SOIL PROPERTIES			
N 0-24"	ı ı pH	Salts 0-6"	CCE%
54 lbs/ac	8.2	0.69	8.5%

PRECIPITATION				
May June July Aug				
Rainfall	42	81	36	30
Normal	58	91	80	66
I Growing season precipitation (mm)				

NODULATION COUNT


	Average # of Nodules @ R2
Seed Applied Inoculant	27
No Inoculant	32

OVERALL YIELD

	Mean (bu/ac)
Seed Applied Inoculant	47.4
No Inoculant	47.2
Yield Difference	0.2
P-Value	0.4560
CV	2.5%
Significance	Νο

NDVI FIELD IMAGE – AUGUST 13, 2018

69

Seed Applied Inoculant Untreated 52 51 50 49 Yield (bu/ac) 48 47 46 45 44 43 42 2 5 1 3 6 4 Replicate

STRIP YIELD

Summary: There was no significant yield difference between soybeans treated with a single seed applied inoculant vs. no inoculant. Soybeans were well nodulated for both the treated and untreated strips. This trial was established on a field with a history of at least three previous, well nodulated soybean crops and the most recent soybean crop was grown within the past four years.

Trial ID: 2018-S1In07 – R.M. of Taché

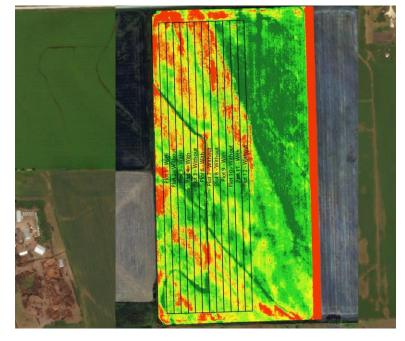
Objective: Quantify the agronomic and economic impacts of seed applied inoculant (single inoculation) vs. no inoculant applied in soybean fields. The trial is conducted in the Central, Eastern and Interlake regions of Manitoba and requires a minimum history of three previous soybean crops.

TRIAL INFORMATION Treatment Seed Applied Inoculant **Rural Municipality** Taché **Previous Crop** Sunflower **Soil Description** Clay Conventional Tillage **Planting Date** May 16, 2018 NSC Jordan RR2Y Variety 20" **Row Spacing Seeding Rate** 165,000 seeds/ac Plant Stand @ V1 95,000 plants/ac # of Years since Soy 3 years # of Prev. Soy Crops 2015, >3x in past **Harvest Date** October 2, 2018

SOIL PROPERTIES			
N 0-24" pH Salts 0-6" CCE%			
69 lbs/ac	8.1	0.93	5.8%

PRECIPITATION				
	May	June	July	Aug
Rainfall	42	81	36	30
Normal	58	91	80	66
+ Growing season precipitation (mm)				

NODULATION COUNT


	Average # of Nodules @ R2
Seed Applied Inoculant	27
No Inoculant	25

OVERALL YIELD

	Mean (bu/ac)
Seed Applied Inoculant	29.7
No Inoculant	29.8
Yield Difference	- 0.1
P-Value	0.7316
CV	5.0%
Significance	Νο

NDVI FIELD IMAGE – AUGUST 13, 2018

70

STRIP YIELD

Seed Applied Inoculant Untreated 36 35 34 33 Yield (bu/ac) 32 31 30 29 28 27 26 2 1 3 4 5 Replicate

Summary: There was no significant yield difference between soybeans treated with a single seed applied inoculant vs. no inoculant. Soybeans were well nodulated for both the treated and untreated strips. This trial was established on a field with a history of at least three previous, well nodulated soybean crops and the most recent soybean crop was grown within the past four years.

Treatment

Tillage

Variety

Rural Municipality

Previous Crop

Soil Description

Planting Date

Row Spacing Seeding Rate

Plant Stand @ V1

of Years since Soy

TRIAL INFORMATION

Clay

10″

St. Andrews

Conventional

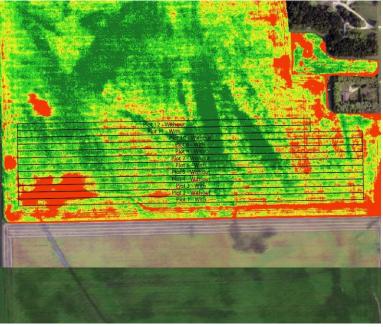
May 16, 2018 LS 005R24

175,000 seeds/ac

146,000 plants/ac

Soybeans

Seed Applied Inoculant


Soybean Inoculant Trial – Seed Applied vs. No Inoculant

71

Trial ID: 2018-S1In08 - R.M. of St. Andrews

Objective: Quantify the agronomic and economic impacts of seed applied inoculant (single inoculation) vs. no inoculant applied in soybean fields. The trial is conducted in the Central, Eastern and Interlake regions of Manitoba and requires a minimum history of three previous soybean crops.

NDVI FIELD IMAGE – AUGUST 13, 2018

Summary: There was no significant yield difference between soybeans treated with a single seed applied inoculant vs. no inoculant. Soybeans were well nodulated for both the treated and untreated strips. This trial was established on a field with a history of at least three previous, well nodulated soybean crops and the most recent soybean crop was grown within the past four years.

# of Prev. Soy Crops		2017, 2015, >3x in past		
Harvest Date		October 19, 2018		
SOIL PROPERTIES				
N 0-24″	рН	Salts 0-6"	CCE%	
30 lbs/ac	7.7	0.70	1.1%	
PRECIPITATION				

1 year

PRECIPITATION ⁺				
	May	June	July	Aug
Rainfall	47	90	90	77
Normal	54	92	66	63
I Growing season precipitation (mm)				

NODULATION COUNT

	Average # of Nodules @ R2
Seed Applied Inoculant	27
No Inoculant	24

OVERALL YIELD

• • • • • • • • • • • • • • • • • • • •		
	Mean (bu/ac)	
Seed Applied Inoculant	38.2	
No Inoculant	38.4	
Yield Difference	- 0.2	
P-Value	0.6549	
CV	1.9%	
Significance	No	

The objective of this study was to quantify the agronomic and economic impacts of seed applied inoculant (single inoculation) vs. seed applied plus in-furrow inoculant (double inoculation) in soybean fields. This trial requires a minimum field history of 2 previous soybean crops.

Soybean inoculant (seed applied inoculant vs. seed applied + in-furrow inoculant) trial summary for 7 On-Farm Network trials across Manitoba in 2018.

Trial ID	Rural Municipality	Seeding Date	Nodule Count @ R2		Yield		Yield			Statistically
			Double	Single	Double	Single	Difference	cv	P-Value	Significant @ 95%
					b	u/ac	bu/ac	%		
S2IN01	Boissevain Morton	May 15	29	34	33.9	34.7	-0.8	4.7	0.3329	No
S2IN02	Louise	May 15	29	32	28.5	28.7	-0.2	4.9	0.7702	No
S2IN03	Louise	May 15	32	39	35.9	36.0	-0.1	7.0	0.7984	No
S2IN05	Oakland Wawanesa	May 16	28	23	46.8	46.5	0.4	4.9	0.6040	No
S2IN06	Glenella Lansdwone	May 19	18	18	21.0	20.0	1.0	16.7	0.2176	No
S2IN07	Dauphin	May 22	39	38	41.5	41.9	-0.5	2.7	0.5252	No
S2IN09	Dauphin	May 22	23	20	43.1	43.7	-0.6	2.2	0.2292	No

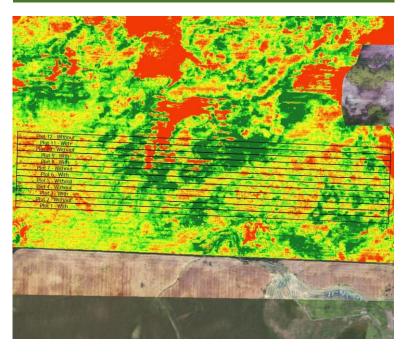
73

Trial ID: 2018-S2In01 – R.M. of Boissevain-Morton

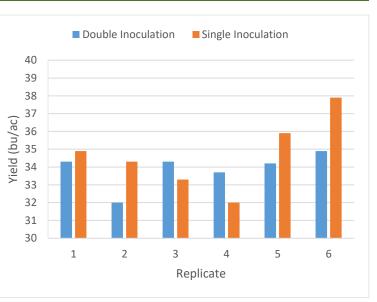
Objective: Quantify the agronomic and economic impacts of seed applied inoculant (single inoculation) vs. seed applied plus in-furrow inoculant (double inoculation) in soybean fields. This trial requires a minimum field history of 2 previous soybean crops.

TRIAL INFORMATION			
Treatment	Single vs. Double Inoculation		
Rural Municipality	Boissevain-Morton		
Previous Crop	Soybean		
Soil Description	Loam to Clay Loam		
Tillage	Conventional		
Planting Date	May 15, 2018		
Variety	Torro R2		
Row Spacing	12"		
Seeding Rate	185,000 seeds/ac		
Plant Stand @V1	177,000 plants/ac		
# of Years since Soy	1 year		
# of Prev. Soy Crops	2017, 2013		
In-Furrow Inoculant	5 lbs/ac N-Row (peat/granular)		
Harvest Date	September 8, 2018		

SOIL PROPERTIES					
N 0-24" pH Salts 0-6" CCE%					
50 lbs/ac	7.6	1.21	2.2%		


PRECIPITATION					
. May June July Aug					
Rainfall	19	84	23	25	
Normal	47	84	65	58	
+ Growing season precipitation (mm)					

NODULATION COUNT		
	Average # of Nodules @ R2	
Double Inoculation	29	
Single Inoculation	34	


OVERALL YIELD

	Mean (bu/ac)
Double Inoculation	33.9
Single Inoculation	34.7
Yield Difference	- 0.8
P-Value	0.3329
CV	4.7%
Significance	Νο

NDVI FIELD IMAGE – AUG 10, 2018 (GROWTH STAGE R6)

STRIP YIELD

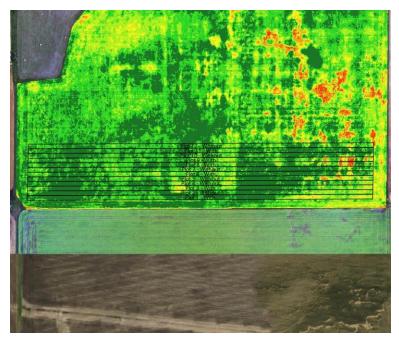
Summary: There was no significant yield difference between seed applied inoculant (single inoculant) and seed applied plus infurrow inoculant (double inoculation) applied to soybeans. There was good nodulation for both single and double inoculation treatments. This trial was established on a field with a history of at least two previous, well nodulated soybean crops.

Trial ID: 2018-S2In02 - R.M. of Louise

Objective: Quantify the agronomic and economic impacts of seed applied inoculant (single inoculation) vs. seed applied plus in-furrow inoculant (double inoculation) in soybean fields. This trial requires a minimum field history of 2 previous soybean crops.

TRIAL INFORMATION			
Treatment	Single vs. Double Inoculation		
Rural Municipality	Louise		
Previous Crop	Barley		
Soil Description	Clay Loam		
Tillage	No-Till		
Planting Date	May 15, 2018		
Variety	S0009-M2		
Row Spacing	10"		
Seeding Rate	180,000 seeds/ac		
Plant Stand @V1	83,000 plants/ac		
# of Years since Soy	2 years		
# of Prev. Soy Crops	2016, 3x in past		
In-Furrow Inoculant	4.5 lbs/ac Cell-Tech (granular)		
Harvest Date	September 3, 2018		

SOIL PROPERTIES					
N 0-24″	г рН	Salts 0-6"	CCE%		
24 lbs/ac	7.9	0.45	0.9%		


PRECIPITATION ⁺					
May June July Aug					
Rainfall	82	88	31	34	
Normal	61	90	68	72	
+ Growing season precipitation (mm)					

NODOLATION COUNT		
Average # of Nodules @ R2		
Double Inoculation	29	
Single Inoculation	32	

OVERALL YIELD

	Mean (bu/ac)
Double Inoculation	28.5
Single Inoculation	28.7
Yield Difference	- 0.2
P-Value	0.7702
CV	4.9%
Significance	No

NDVI FIELD IMAGE – AUG 10, 2018 (GROWTH STAGE R6)

Double Inoculation Single Inoculation 34 33 32 31 Yield (bu/ac) 30 29 28 27 26 25 24 2 5 1 3 4 6 Replicate

STRIP YIELD

Summary: There was no significant yield difference between seed applied inoculant (single inoculant) and seed applied plus infurrow inoculant (double inoculation) applied to soybeans. There was good nodulation for both single and double inoculation treatments. This trial was established on a field with a history of at least two previous, well nodulated soybean crops.

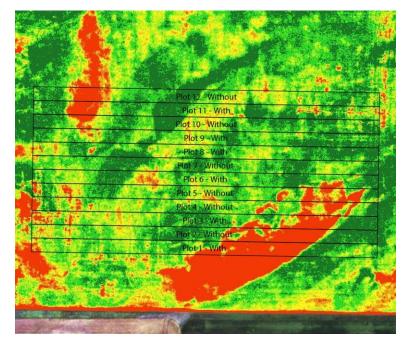
Trial ID: 2018-S2In03 – R.M. of Louise

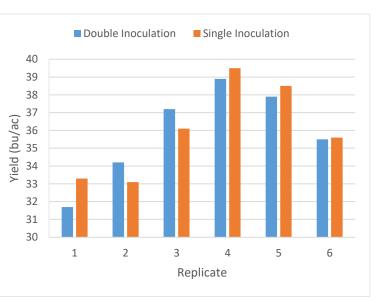
Objective: Quantify the agronomic and economic impacts of seed applied inoculant (single inoculation) vs. seed applied plus in-furrow inoculant (double inoculation) in soybean fields. This trial requires a minimum field history of 2 previous soybean crops.

TRIAL INFORMATION			
Treatment	Single vs. Double Inoculation		
Rural Municipality	Louise		
Previous Crop	Wheat		
Soil Description	Loam to Clay Loam		
Tillage	Vertical Till		
Planting Date	May 15, 2018		
Variety	P002A19X		
Row Spacing	15"		
Seeding Rate	185,000 seeds/ac		
Plant Stand @V1	128,000 plants/ac		
# of Years since Soy	2 years		
# of Prev. Soy Crops	2016, 2014		
In-Furrow Inoculant	7 lbs/ac Cell-Tech (granular)		
Harvest Date	September 4, 2018		

SOIL PROPERTIES				
N 0-24" pH Salts 0-6" CCE%				
72 lbs/ac	7.4	0.64	2.5%	

PRECIPITATION ⁺					
i May i June i July i Aug					
Rainfall	82	88	31	34	
Normal	61	90	68	72	
+ Growing season precipitation (mm)					


NODULATION COUNT


Average # of Nodules @			
Double Inoculation	32		
Single Inoculation	39		

OVERALL YIELD

	Mean (bu/ac)	
Double Inoculation	35.9	
Single Inoculation	36.0	
Yield Difference	- 0.1	
P-Value	0.7984	
CV	7.0%	
Significance	No	

NDVI FIELD IMAGE – AUG 10, 2018 (GROWTH STAGE R6)

STRIP YIELD

Summary: There was no significant yield difference between seed applied inoculant (single inoculant) and seed applied plus infurrow inoculant (double inoculation) applied to soybeans. There was good nodulation for both single and double inoculation treatments. This trial was established on a field with a history of at least two previous, well nodulated soybean crops.

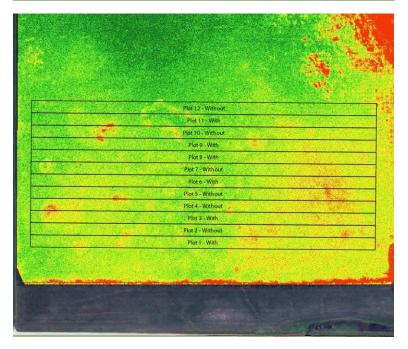
Pulse Soybean

Trial ID: 2018-S2In05 - R.M. of Oakland-Wawanesa

Objective: Quantify the agronomic and economic impacts of seed applied inoculant (single inoculation) vs. seed applied plus in-furrow inoculant (double inoculation) in soybean fields. This trial requires a minimum field history of 2 previous soybean crops.

TRIAL INFORMATION			
Treatment Single vs. Double Inoculation			
Rural Municipality	Oakland-Wawanesa		
Previous Crop	Barley		
Soil Description	Clay Loam		
Tillage	Reduced Till		
Planting Date	May 16, 2018		
Variety	23-60RY		
Row Spacing	ng 10"		
Seeding Rate	190,000 seeds/ac		
Plant Stand @V1	tand @V1 156,000 plants/ac		
# of Years since Soy	4 years		
# of Prev. Soy Crops	2014, 2010		
In-Furrow Inoculant	5 lbs/ac Nodulator (granular)		
Harvest DateSeptember 19, 2018			

SOIL PROPERTIES				
N 0-24" pH Salts 0-6" CCE%				
38 lbs/ac	6.7	0.44	0.7%	


PRECIPITATION					
i May i June i July i Aug					
Rainfall	29	61	i 57	27	
Normal	51	73	74	68	
+ Growing season precipitation (mm)					

NODULATION COUNT				
Average # of Nodules @ R				
Double Inoculation 28				
Single Inoculation 23				

OVERALL YIELD

	Mean (bu/ac)	
Double Inoculation	46.8	
Single Inoculation	46.5	
Yield Difference	0.3	
P-Value	0.6040	
CV	4.9%	
Significance	No	

NDVI FIELD IMAGE – AUG 10, 2018 (GROWTH STAGE R6)

Summary: There was no significant yield difference between seed applied inoculant (single inoculant) and seed applied plus infurrow inoculant (double inoculation) applied to soybeans. There was good nodulation for both single and double inoculation treatments. This trial was established on a field with a history of at least two previous, well nodulated soybean crops.

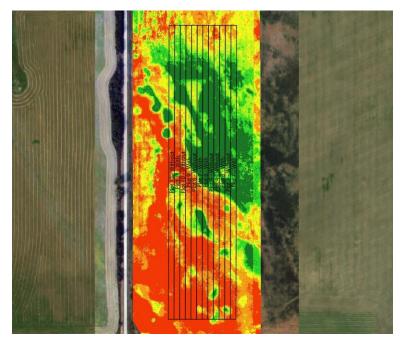
MPSG would like to thank BASF for providing the granular inoculant and Tone Ag Consulting for the research support

Trial ID: 2018-S2In06 - R.M. of Glenella-Lansdowne

Objective: Quantify the agronomic and economic impacts of seed applied inoculant (single inoculation) vs. seed applied plus in-furrow inoculant (double inoculation) in soybean fields. This trial requires a minimum field history of 2 previous soybean crops.

TRIAL INFORMATION			
Treatment Single vs. Double Inoculation			
Rural Municipality	ral Municipality Glenella-Lansdowne		
Previous Crop	Winter Wheat		
Soil Description	Loamy Fine Sand		
Tillage	Conventional		
Planting Date	May 19, 2018		
Variety	P006T46R		
Row Spacing	10"		
Seeding Rate	162,000 seed/ac		
Plant Stand @V1	123,000 plants/ac		
# of Years since Soy	3 years		
# of Prev. Soy Crops	2015, 2014		
In-Furrow Inoculant	5 lbs/ac Nodulator (granular)		
Harvest Date September 19, 2018			

SOIL PROPERTIES					
N 0-24" pH Salts 0-6" CCE%					
61 lbs/ac	8.2	0.25	4.8%		


PRECIPITATION					
i May i June i July i Aug					
Rainfall	46	42	67	37	
Normal	50	77	62	64	
t Growing season precipitation (mm)					

NODULATION COUNT		
	Average # of Nodules @ R2	
Double Inoculation	18	
Single Inoculation	18	

OVERALL YIELD

	Mean (bu/ac)
Double Inoculation	21.0
Single Inoculation	20.0
Yield Difference	1.0
P-Value	0.2176
CV	16.7%
Significance	No

NDVI FIELD IMAGE – AUG 11, 2018 (GROWTH STAGE R6)

STRIP YIELD

Double Inoculation Single Inoculation 30 28 26 24 Yield (bu/ac) 22 20 18 16 14 12 10 2 1 3 4 5 6 Replicate

Summary: There was no significant yield difference between seed applied inoculant (single inoculant) and seed applied plus infurrow inoculant (double inoculation) applied to soybeans. There was good nodulation for both single and double inoculation treatments. This trial was established on a field with a history of at least two previous, well nodulated soybean crops.

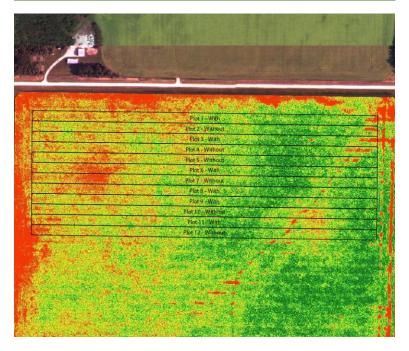
MPSG would like to thank BASF for providing the granular inoculant and Tone Ag Consulting for the research support

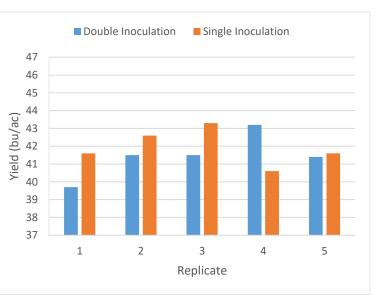
Trial ID: 2018-S2In07 – R.M. of Dauphin

Objective: Quantify the agronomic and economic impacts of seed applied inoculant (single inoculation) vs. seed applied plus in-furrow inoculant (double inoculation) in soybean fields. This trial requires a minimum field history of 2 previous soybean crops.

TRIAL INFORMATION		
Treatment	Single vs. Double Inoculation	
Rural Municipality	Dauphin	
Previous Crop	Wheat	
Soil Description	Fine Sandy Loam	
Tillage	Conventional	
Planting Date	May 22, 2018	
Variety	Notus R2	
Row Spacing	10"	
Seeding Rate	218,000 seeds/ac	
Plant Stand @V1	178,000 plants/ac	
# of Years since Soy	2 years	
# of Prev. Soy Crops	2016, 2012	
In-Furrow Inoculant	5 lbs/ac Cell-Tech (granular)	
Harvest Date	October 20, 2018	

SOIL PROPERTIES			
N 0-24″	¦ рН	Salts 0-6"	CCE%
53 lbs/ac	8.1	0.29	3.2%


PRECIPITATION ⁺				
May June July Aug				
Rainfall	38	104	91	3
Normal 1 54 1 87 1 73 1 63				
t Growing season precipitation (mm)				


NODULATION COUNT		
Average # of Nodules @ R2		
Double Inoculation	39	
Single Inoculation 38		

OVERALL YIELD

	Mean (bu/ac)
Double Inoculation	41.5
Single Inoculation	41.9
Yield Difference	- 0.4
P-Value	0.5252
CV	2.7%
Significance	No

NDVI FIELD IMAGE – AUG 9, 2018 (GROWTH STAGE R6)

STRIP YIELD

Summary: There was no significant yield difference between seed applied inoculant (single inoculant) and seed applied plus infurrow inoculant (double inoculation) applied to soybeans. There was good nodulation for both single and double inoculation treatments. This trial was established on a field with a history of at least two previous, well nodulated soybean crops.

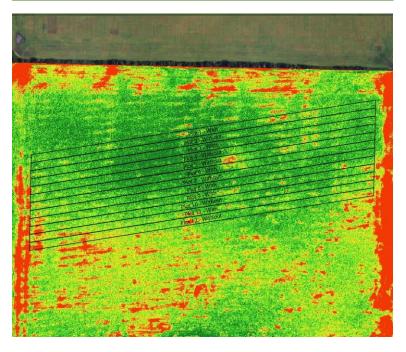
Pulse Soybean

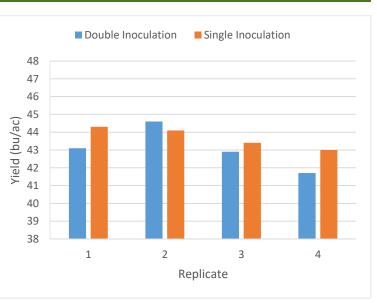
Trial ID: 2018-S2In09 – R.M. of Dauphin

Objective: Quantify the agronomic and economic impacts of seed applied inoculant (single inoculation) vs. seed applied plus in-furrow inoculant (double inoculation) in soybean fields. This trial requires a minimum field history of 2 previous soybean crops.

TRIAL INFORMATION		
Treatment	Single vs. Double Inoculation	
Rural Municipality	Dauphin	
Previous Crop	Soybean	
Soil Description	Clay / Loam	
Tillage	No-Till	
Planting Date	May 22, 2018	
Variety	Akras R2	
Row Spacing	9.8″	
Seeding Rate	199,000 seeds/ac	
Plant Stand @V1	180,000 plants/ac	
# of Years since Soy	1 year	
# of Prev. Soy Crops	2017, 2014	
In-Furrow Inoculant	7.5 lbs/ac Cell-Tech (granular)	
Harvest Date	October 20, 2018	

SOIL PROPERTIES			
N 0-24″	г рН	Salts 0-6"	CCE%
31 lbs/ac	7.7	2.25	5.3%


PRECIPITATION [†]				
May June July Aug				
Rainfall	38	104	91	3
Normal 1 54 1 87 1 73 1 63				
+ Growing season precipitation (mm)				


NUDULATION COUNT		
Average # of Nodules @ R2		
Double Inoculation	23	
Single Inoculation 20		

OVERALL YIELD

	Mean (bu/ac)
Double Inoculation	43.1
Single Inoculation	43.7
Yield Difference	- 0.6
P-Value	0.2292
CV	2.2%
Significance	No

NDVI FIELD IMAGE – AUG 9, 2018 (GROWTH STAGE R6)

STRIP YIELD

Summary: There was no significant yield difference between seed applied inoculant (single inoculant) and seed applied plus infurrow inoculant (double inoculation) applied to soybeans. There was good nodulation for both single and double inoculation treatments. This trial was established on a field with a history of at least two previous, well nodulated soybean crops.

The objective of this study was to evaluate the agronomic and economic impacts of soybeans seeded at 190,000 seeds/ac, 160,000 seeds/ac, and 130,000 seeds/ac.

Rural		Seeding Row		Plant Stand @ Harvest			Yield				Statistically	
Trial ID	Municipality	Date	Spacing	190K	160K	130K	190K	160K	130K	CV	P-Value	Significant @ 95%
			inch		'000/ac			bu/ac		%		
SP01	Springfield	May 6	15	183	141	123	42.8	42.5	41.5	2.4	0.0819	No
SP02	Roland	May 6	30	158	128	114	28.7	28.3	28.5	3.6	0.8918	No
SP03	Macdonald	May 8	10	166	161	110	29.8	30.0	29.9	1.4	0.8669	No
SP04	Morris	May 9	15	131	118	104	29.0	30.3	28.3	5.6	0.2553	No
SP05	Rhineland	May 10	30	179	154	125	36.7 a	35.9 b	35.3 b	1.9	0.0014	Yes
SP06	St. Clements	May 12	10				51.6 a	50.3 ab	50.0 b	2.0	0.0204	Yes
SP07	Morris	May 12	9	168	126	120	37.6	37.1	36.8	1.6	0.1145	No
SP08	Morris	May 14	30	169	135	125	26.4	25.6	26.1	4.5	0.6072	No
SP09	Montcalm	May 15	10	157	130	110	37.9	37.4	37.3	5.9	0.8263	No
SP11	St. Andrews	May 16	10	160	148	133	36.7	36.5	35.9	2.5	0.2985	No
SP12	Wallace Woodworth	May 17	10	142	135	101	27.4 a	26.8 ab	26.0 b	4.7	0.0254	Yes
SP13	Grassland	May 28	15	138	117	91	40.4	39.8	39.6	2.7	0.1340	No
SP16	Woodlands	May 22	15	129	122	97	37.8	37.4	36.9	2.6	0.4267	No
SP17	Swan Valley West	May 23	10				45.8 a	45.6 a	44.0 b	2.6	0.0056	Yes

Soybean seeding rate trial summary at 14 On-Farm Network trial across Manitoba in 2018.

Treatment

Rural Municipality

Seeding Equipment

Previous Crop

Soil Texture

Planting Date

Row Spacing Harvest Date

Seeding Rate

190,000 seeds/ac

160,000 seeds/ac

130,000 seeds/ac

190,000 seeds/ac

160,000 seeds/ac

130,000 seeds/ac

P-Value

Significance

CV

Rainfall

Normal

Mav

39

54

+ Growing season precipitation (mm)

Tillage

Variety

TRIAL INFORMATION

Springfield

Ryegrass

Clay

15″

SEEDING RATE VS. PLANT STAND Plant Stand @

V1

172,000

146,000

125,000

PRECIPITATION⁺

June

93

91

OVERALL YIELD

No-till

Planter

May 6, 2018

McLeod R2

September 20, 2018

July

32

81

Mean (bu/ac)

42.8

42.5

41.5

0.0819

2.4%

No

Harvest

183,000

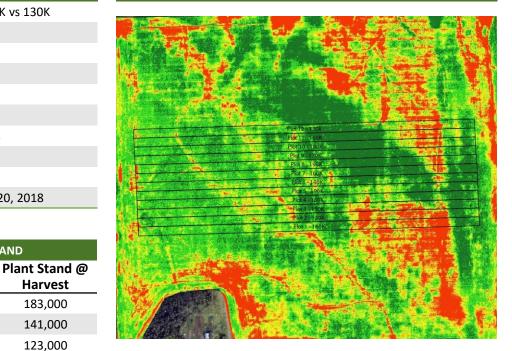
141,000

123,000

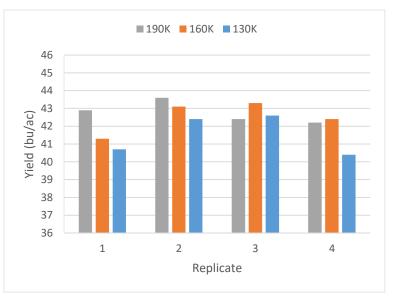
Aug

63

74


190K vs 160K vs 130K

Soybean Seeding Rate Trial


Trial ID: 2018-SP01 – R.M. of Springfield

Objective: Quantify the agronomic and economic impacts of a seeding rate of 190,000 seeds/ac, 160,000 seeds/ac and 130,000 seeds/ac.

NDVI FIELD IMAGE – AUGUST 13, 2018

STRIP YIELD

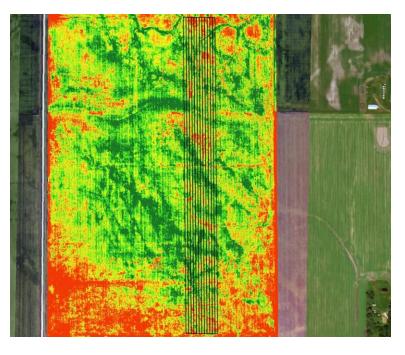
Summary: There was no significant yield difference between soybeans planted at 190,000 seeds/ac, 160,000 seeds/ac, and 130,000 seeds/ac on 15" row spacing. Soybean plant stand ranged from a high of 172,000 plants/ac to a low of 125,000 plants/ac when assessed at growth stage V1.

82

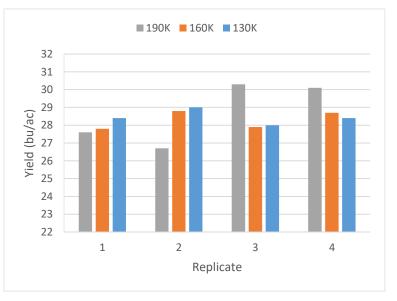
Trial ID: 2018-SP02 - R.M. of Roland

Objective: Quantify the agronomic and economic impacts of a seeding rate of 190,000 seeds/ac, 160,000 seeds/ac and 130,000 seeds/ac.

TRIAL INFORMATION			
Treatment	190K vs 160K vs 130K		
Rural Municipality	Roland		
Previous Crop	Corn		
Soil Texture	Clay		
Tillage	No-till		
Seeding Equipment	Planter		
Planting Date	May 6, 2018		
Variety	P007A90R		
Row Spacing	30″		
Harvest Date	September 4, 2018		


SEEDING RATE VS. PLANT STAND				
Plant Stand @ Plant Stand @				
Seeding Rate	V1	Harvest		
190,000 seeds/ac	159,000	158,000		
160,000 seeds/ac	126,000	128,000		
130,000 seeds/ac	113,000	114,000		

PRECIPITATION					
i May i June i July i Aug					
Rainfall	42	92	44	28	
Normal	54	81	66	71	


+ Growing season precipitation (mm)

OVERALL YIELD			
	Mean (bu/ac)		
190,000 seeds/ac	28.7		
160,000 seeds/ac	28.3		
130,000 seeds/ac	28.5		
P-Value	0.8918		
CV	3.6%		
Significance	No		

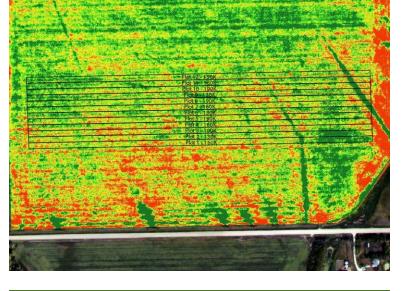
NDVI FIELD IMAGE – AUGUST 13, 2018

STRIP YIELD

Summary: There was no significant yield difference between soybeans planted at 190,000 seeds/ac, 160,000 seeds/ac, and 130,000 seeds/ac on 30" row spacing. Soybean plant stand ranged from a high of 159,000 plants/ac to a low of 113,000 plants/ac when assessed at growth stage V1.

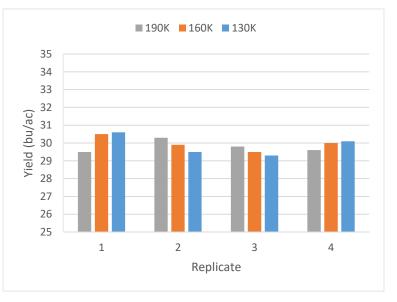
Trial ID: 2018-SP03 – R.M. of Macdonald

Objective: Quantify the agronomic and economic impacts of a seeding rate of 190,000 seeds/ac, 160,000 seeds/ac and 130,000 seeds/ac.


TRIAL INFORMATION Treatment 190K vs 160K vs 130K **Rural Municipality** Macdonald **Previous Crop** Spring Wheat **Soil Texture** Clay Conventional Tillage **Seeding Equipment** Air Drill **Planting Date** May 8, 2018 Variety LS MISTRAL 10″ **Row Spacing Harvest Date** September 10, 2018

SEEDING RATE VS. PLANT STAND					
Plant Stand @ Plant Stand @					
Seeding Rate	V1	Harvest			
190,000 seeds/ac	165,000	166,000			
160,000 seeds/ac	164,000	161,000			
130,000 seeds/ac	107,000	110,000			

PRECIPITATION					
i May i June i July i Aug					
Rainfall	40	81	74	24	
Normal	59	92	78	68	


+ Growing season precipitation (mm)

OVERALL YIELD			
	Mean (bu/ac)		
190,000 seeds/ac	29.8		
160,000 seeds/ac	30.0		
130,000 seeds/ac	29.9		
P-Value	0.8669		
CV	1.4%		
Significance	No		

NDVI FIELD IMAGE – AUGUST 13, 2018

STRIP YIELD

Summary: There was no significant yield difference between soybeans seeded at 190,000 seeds/ac, 160,000 seeds/ac, and 130,000 seeds/ac on 10" row spacing. Soybean plant stand ranged from a high of 165,000 plants/ac to a low of 107,000 plants/ac when assessed at growth stage V1.

T 204 745.6488 www.manitobapulse.ca

84

Treatment

Rural Municipality

Seeding Equipment

Previous Crop

Soil Texture

Planting Date

Row Spacing

Harvest Date

Seeding Rate

190,000 seeds/ac

160,000 seeds/ac

130,000 seeds/ac

190,000 seeds/ac

160,000 seeds/ac

130,000 seeds/ac

P-Value

Significance

CV

Rainfall

Normal

Mav

28

54

+ Growing season precipitation (mm)

Tillage

Variety

TRIAL INFORMATION

Morris

Clay

Spring Wheat

Conventional

May 9, 2018

September 19, 2018

July

38

72

Mean (bu/ac)

29.0

30.3

28.3

0.2553

5.6%

No

Plant Stand @

Harvest

131,000

118,000

104,000

Aug

27

65

Disc Drill

S008-N2

15″

SEEDING RATE VS. PLANT STAND Plant Stand @ Plan

V1

132,000

120,000

105,000

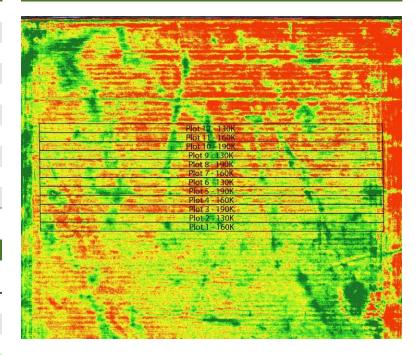
PRECIPITATION⁺

June

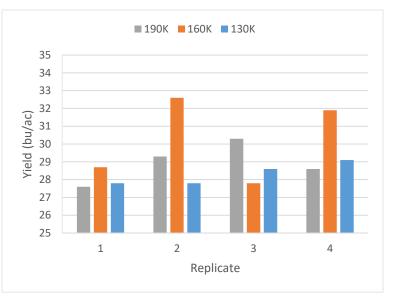
85

86

OVERALL YIELD


190K vs 160K vs 130K

Soybean Seeding Rate Trial

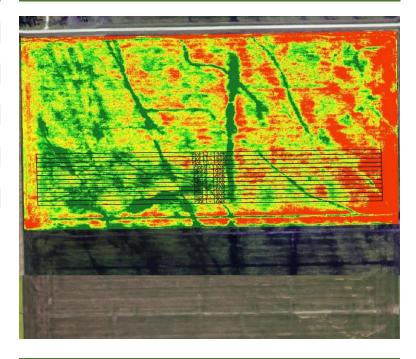

Trial ID: 2018-SP04 - R.M. of Morris

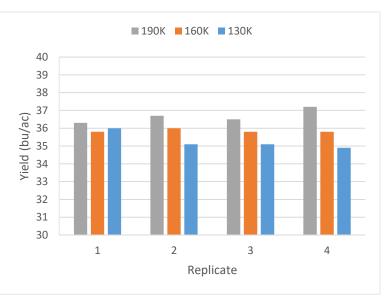
Objective: Quantify the agronomic and economic impacts of a seeding rate of 190,000 seeds/ac, 160,000 seeds/ac and 130,000 seeds/ac.

NDVI FIELD IMAGE – AUGUST 13, 2018

STRIP YIELD

Summary: There was no significant yield difference between soybeans seeded at 190,000 seeds/ac, 160,000 seeds/ac, and 130,000 seeds/ac on 15" row spacing. Soybean plant stand ranged from a high of 132,000 plants/ac to a low of 105,000 plants/ac when assessed at growth stage V1.


85


Trial ID: 2018-SP05 – R.M. of Rhineland

Objective: Quantify the agronomic and economic impacts of a seeding rate of 190,000 seeds/ac, 160,000 seeds/ac and 130,000 seeds/ac.

NDVI FIELD IMAGE – AUGUST 11, 2018

*Means followed by the same letter are not significantly different at P=0.05

Summary: There was a significant yield difference between soybeans planted at 190,000 seeds/ac compared to 160,000 seeds/ac and 130,000 seeds/ac on 30" row spacing. Soybean plant stand ranged from a high of 183,000 plants/ac to a low of 128,000 plants/ac when assessed at growth stage V1.

Pulse Soybean

T 204 745.6488 www.manitobapulse.ca

86

TRIAL INFORMATION			
Treatment	190K vs 160K vs 130K		
Rural Municipality	Rhineland		
Previous Crop	Spring Wheat		
Soil Texture	Clay		
Tillage	Conventional		
Seeding Equipment	Planter		
Planting Date	May 10, 2018		
Variety	PRO 2525R2		
Row Spacing	30"		
Harvest Date	September 7, 2018		

SEEDING RATE VS. PLANT STAND				
Plant Stand @ Plant Stand @				
Seeding Rate	V1	Harvest		
190,000 seeds/ac	183,000	179,000		
160,000 seeds/ac	155,000	154,000		
130,000 seeds/ac	128,000	125,000		

PRECIPITATION					
May June July Aug					
Rainfall	34	44	39	42	
Normal	56 J	85	75	66	

+ Growing season precipitation (mm)

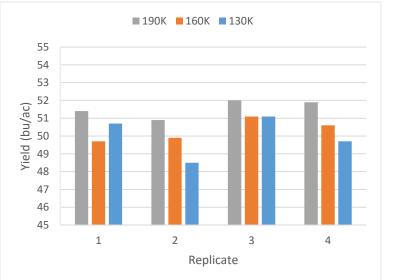
OVERA	LL YIELD
	Mean (bu/ac)
190,000 seeds/ac	36.7 a *
160,000 seeds/ac	35.9 b
130,000 seeds/ac	35.3 b
P-Value	0.0014
CV	1.9%
Significance	Yes

Trial ID: 2018-SP06 - R.M. of St. Clements

Objective: Quantify the agronomic and economic impacts of a seeding rate of 190,000 seeds/ac, 160,000 seeds/ac and 130,000 seeds/ac.

NDVI FIELD IMAGE – AUGUST 13, 2018

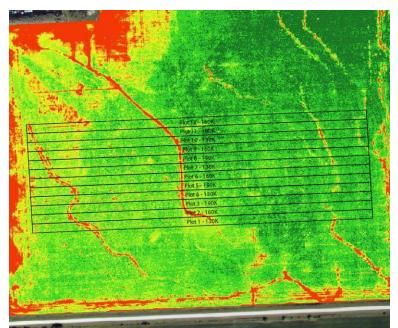
I KIAL IN	FORMATION
Treatment	190K vs 160K vs 130K
Rural Municipality	St. Clements
Previous Crop	Spring Wheat
Soil Texture	Fine Sandy Loam
Tillage	Conventional
Seeding Equipment	Air Drill
Planting Date	May 12, 2018
Variety	24-10RY
Row Spacing	10"
Harvest Date	September 20, 2018


TRIAL INFORMATION

SEEDIN	G RATE VS. PLANT S	TAND
	Plant Stand @	Plant Stand @
Seeding Rate	V1	Harvest
190,000 seeds/ac	134,000	
160,000 seeds/ac	104,000	
130,000 seeds/ac	104,000	

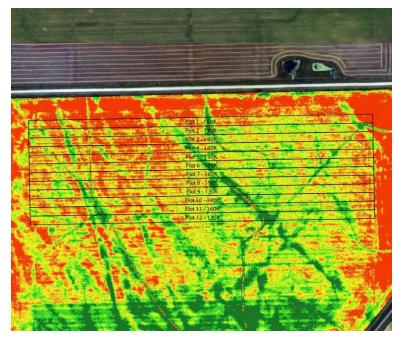
	Р	RECIPITATIO	N [†]	
	May	June	July	Aug
Rainfall	53	120	25	45
Normal	54	90	73	73

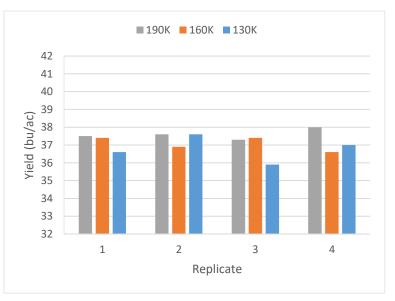
+ Growing season precipitation (mm)


OVER	ALL YIELD
	Mean (bu/ac)
190,000 seeds/ac	51.6 a*
160,000 seeds/ac	50.3 b
130,000 seeds/ac	50.0 b
P-Value	0.0204
CV	2.0%
Significance	Yes

*Means followed by the same letter are not significantly different at P=0.05

Summary: There was a significant yield difference between soybeans seeded at 190,000 seeds/ac compared to 160,000 seeds/ac and 130,000 seeds/ac on 10" row spacing. Soybean plant stand ranged from a high of 134,000 plants/ac to a low of 104,000 plants/ac when assessed at growth stage V1.


STRIP YIELD


Trial ID: 2018-SP07 - R.M. of Morris

Objective: Quantify the agronomic and economic impacts of a seeding rate of 190,000 seeds/ac, 160,000 seeds/ac and 130,000 seeds/ac.

NDVI FIELD IMAGE – AUGUST 11, 2018

STRIP YIELD

Summary: There was no significant yield difference between soybeans seeded at 190,000 seeds/ac, 160,000 seeds/ac, and 130,000 seeds/ac on 9" row spacing. Soybean plant stand ranged from a high of 175,000 plants/ac to a low of 125,000 plants/ac when assessed at growth stage V1.

88

Treatment 190K vs 160K vs 130K **Rural Municipality** Morris **Previous Crop** Spring Wheat **Soil Texture** Clay Tillage Conventional **Seeding Equipment** Air Drill **Planting Date** May 12, 2018 Variety DKB005-52 9" **Row Spacing Harvest Date** September 6, 2018

TRIAL INFORMATION

SEEDIN	G RATE VS. PLANT S	TAND
	Plant Stand @	Plant Stand @
Seeding Rate	V1	Harvest
190,000 seeds/ac	175,000	168,000
160,000 seeds/ac	127,000	126,000
130,000 seeds/ac	125,000	120,000

	P	RECIPITATIO	N [†]	
	May	June	i July	l Aug
Rainfall	30	73	66	29
Normal	54 J	86	72	65

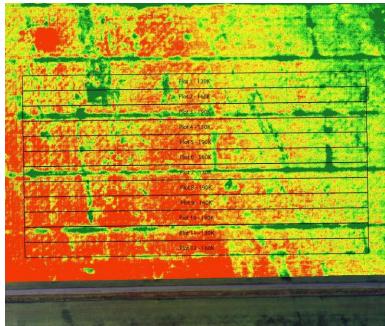
+ Growing season precipitation (mm)

OVERA	ALL YIELD
	Mean (bu/ac)
190,000 seeds/ac	37.6
160,000 seeds/ac	37.1
130,000 seeds/ac	36.8
P-Value	0.1145
CV	1.6%
Significance	No

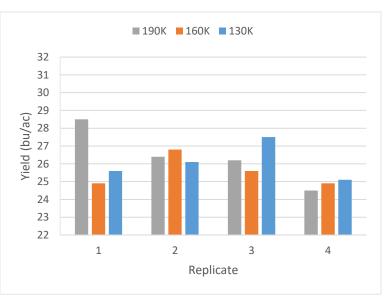
Trial ID: 2018-SP08 - R.M. of Morris

Objective: Quantify the agronomic and economic impacts of a seeding rate of 190,000 seeds/ac, 160,000 seeds/ac and 130,000 seeds/ac.

NDVI FIELD IMAGE – AUGUST 11, 2018


SEEDIN	G RATE VS. PLANT S	TAND
	Plant Stand @	Plant Stand @
Seeding Rate	V1	Harvest
190,000 seeds/ac	182,000	169,000
160,000 seeds/ac	123,000	135,000
130,000 seeds/ac	150,000	125,000

TRIAL INFORMATION


	P	RECIPITATIO	N [†]	
	l May	June	i July	Aug
Rainfall	30	73	66	29
Normal	54	86	72	65

+ Growing season precipitation (mm)

OVER	ALL YIELD
	Mean (bu/ac)
190,000 seeds/ac	26.4
160,000 seeds/ac	25.6
130,000 seeds/ac	26.1
P-Value	0.6072
CV	4.5%
Significance	Νο

STRIP YIELD

Summary: There was no significant yield difference between soybeans planted at 190,000 seeds/ac, 160,000 seeds/ac, and 130,000 seeds/ac on 30" row spacing. Soybean plant stand ranged from a high of 182,000 plants/ac to a low of 123,000 plants/ac when assessed at growth stage V1.

Treatment

Rural Municipality

Seeding Equipment

Previous Crop

Soil Texture

Planting Date

Row Spacing

Harvest Date

Seeding Rate

190,000 seeds/ac

160,000 seeds/ac

130,000 seeds/ac

190,000 seeds/ac

160,000 seeds/ac

130,000 seeds/ac

P-Value

Significance

CV

Rainfall

Normal

Mav

44

58

+ Growing season precipitation (mm)

Tillage

Variety

TRIAL INFORMATION

Montcalm

Conventional

May 15, 2018

PRO 2525R2

September 18, 2018

July

47

81

Mean (bu/ac)

37.9

37.4

37.3

0.8263

5.9%

No

Harvest

157,000

130,000

110,000

Aug

37

72

Millet

Air Drill

Clay

10"

SEEDING RATE VS. PLANT STAND Plant Stand @

V1

154,000

117,000

136,000

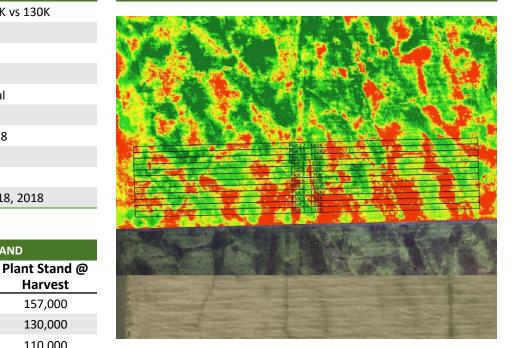
PRECIPITATION⁺

June

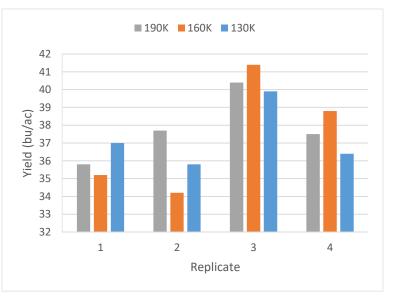
69

90

OVERALL YIELD


190K vs 160K vs 130K

Soybean Seeding Rate Trial


Trial ID: 2018-SP09 – R.M. of Montcalm

Objective: Quantify the agronomic and economic impacts of a seeding rate of 190,000 seeds/ac, 160,000 seeds/ac and 130,000 seeds/ac.

NDVI FIELD IMAGE – AUGUST 11, 2018

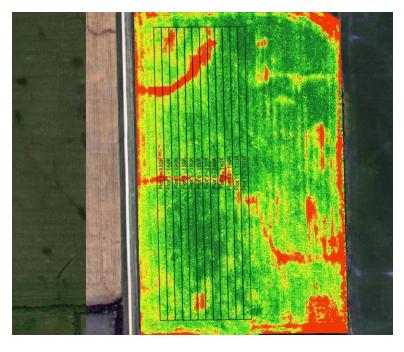
STRIP YIELD

Summary: There was no significant yield difference between soybeans seeded at 190,000 seeds/ac, 160,000 seeds/ac, and 130,000 seeds/ac on 10" row spacing. Soybean plant stand ranged from a high of 154,000 plants/ac to a low of 117,000 plants/ac when assessed at growth stage V1.

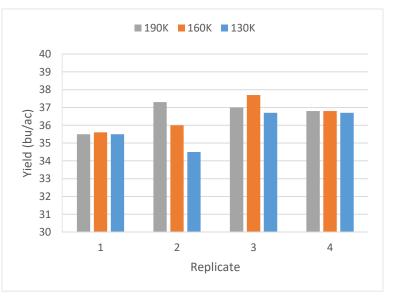
Trial ID: 2018-SP11 – R.M. of St. Andrews

Objective: Quantify the agronomic and economic impacts of a seeding rate of 190,000 seeds/ac, 160,000 seeds/ac and 130,000 seeds/ac.

TRIAL INFORMATION		
Treatment	190K vs 160K vs 130K	
Rural Municipality	St. Andrews	
Previous Crop	Spring Wheat	
Soil Texture	Clay	
Tillage	Conventional	
Seeding Equipment	Air Drill	
Planting Date	May 17, 2018	
Variety	24-10RY	
Row Spacing	10"	
Harvest Date	October 19, 2018	


SEEDING RATE VS. PLANT STAND			
Plant Stand @ Plant Stand @			
Seeding Rate	V1	Harvest	
190,000 seeds/ac	171,000	160,000	
160,000 seeds/ac	152,000	148,000	
130,000 seeds/ac	139,000	133,000	

PRECIPITATION [†]				
May June July Aug				l Aug
Rainfall	39	93	32	63
Normal	54	91	81	74


+ Growing season precipitation (mm)

OVERALL YIELD		
	Mean (bu/ac)	
190,000 seeds/ac	36.7	
160,000 seeds/ac	36.5	
130,000 seeds/ac	35.9	
P-Value	0.2985	
CV	2.5%	
Significance	No	

NDVI FIELD IMAGE – AUGUST 13, 2018

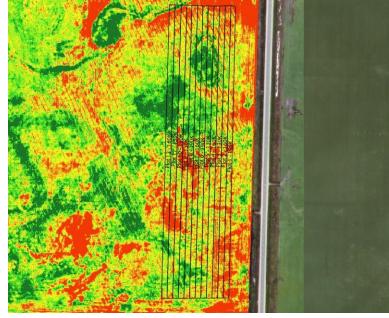
STRIP YIELD

Summary: There was no significant yield difference between soybeans seeded at 190,000 seeds/ac, 160,000 seeds/ac, and 130,000 seeds/ac on 10" row spacing. Soybean plant stand ranged from a high of 171,000 plants/ac to a low of 139,000 plants/ac when assessed at growth stage V1.

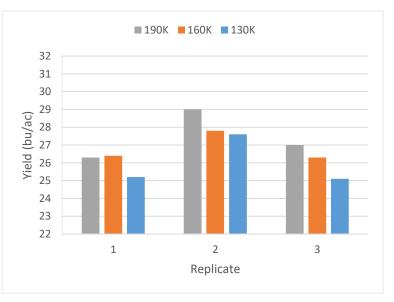
Trial ID: 2018-SP12 – R.M. of Wallace-Woodworth

Objective: Quantify the agronomic and economic impacts of a seeding rate of 190,000 seeds/ac, 160,000 seeds/ac and 130,000 seeds/ac.

TRIAL INFORMATION		
Treatment	190K vs 160K vs 130K	
Rural Municipality	Wallace-Woodworth	
Previous Crop	Annual Rye Grass	
Soil Texture	Clay Loam	
Tillage	No-till	
Seeding Equipment	Planter	
Planting Date	May 28, 2018	
Variety	P006T78R	
Row Spacing	15″	
Harvest Date	October 16, 2018	


SEEDING RATE VS. PLANT STAND			
Plant Stand @ Plant Stand @			
Seeding Rate	V1	Harvest	
190,000 seeds/ac	153,000	142,000	
160,000 seeds/ac	142,000	135,000	
130,000 seeds/ac	103,000	101,000	

PRECIPITATION				
	May June July Aug			Aug
Rainfall	63	97	58	24
Normal	48	76	65	58


+ Growing season precipitation (mm)

OVERALL YIELD		
	Mean (bu/ac)	
190,000 seeds/ac	27.4 a	
160,000 seeds/ac	26.8 ab	
130,000 seeds/ac	26.0 b	
P-Value	0.0254	
CV	4.7%	
Significance	Yes	

NDVI FIELD IMAGE – AUGUST 11, 2018

STRIP YIELD

*Means followed by the same letter are not significantly different at P=0.05

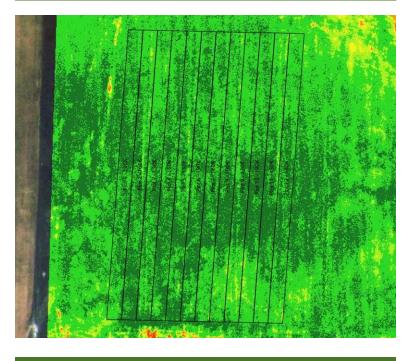
Summary: There was a significant yield difference between soybeans planted at 190,000 seeds/ac compared to 130,000 seeds/ac, but no significant difference compared to 160,000 seeds/ac on 10" row spacing. Soybean plant stand ranged from a high of 153,000 plants/ac to a low of 103,000 plants/ac when assessed at growth stage V1.

MPSG would like to thank Tone Ag Consulting for the research support

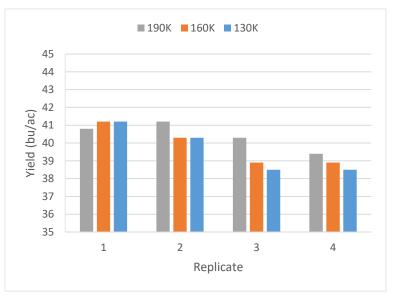
Trial ID: 2018-SP13 - R.M. of Grassland

Objective: Quantify the agronomic and economic impacts of a seeding rate of 190,000 seeds/ac, 160,000 seeds/ac and 130,000 seeds/ac.

TRIAL INFORMATION		
Treatment	190K vs 160K vs 130K	
Rural Municipality	Grassland	
Previous Crop	Wheat	
Soil Texture	Loamy Very Fine Sand	
Tillage	No-till	
Seeding Equipment	Planter	
Planting Date	May 22, 2018	
Variety	23-11	
Row Spacing	15"	
Harvest Date	September 28, 2018	


SEEDING RATE VS. PLANT STAND			
Plant Stand @ Plant Stand @			
Seeding Rate	V1	Harvest	
190,000 seeds/ac	143,000	138,000	
160,000 seeds/ac	127,000	117,000	
130,000 seeds/ac	97,000	91,000	

PRECIPITATION				
	May	June	July	Aug
Rainfall	15	116	80	21
Normal	47	84	65	58


+ Growing season precipitation (mm)

OVERALL YIELD		
	Mean (bu/ac)	
190,000 seeds/ac	40.4	
160,000 seeds/ac	39.8	
130,000 seeds/ac	39.6	
P-Value	0.1340	
CV	2.7%	
Significance	No	

NDVI FIELD IMAGE – AUGUST 10, 2018

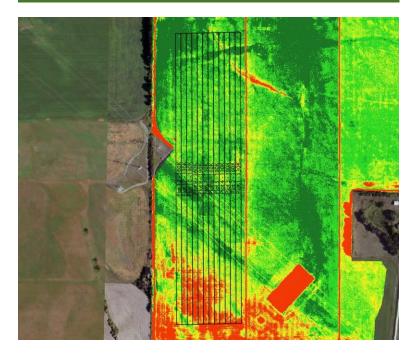
STRIP YIELD

Summary: There was no significant yield difference between soybeans planted at 190,000 seeds/ac, 160,000 seeds/ac, and 130,000 seeds/ac on 15" row spacing. Soybean plant stand ranged from a high of 143,000 plants/ac to a low of 97,000 plants/ac when assessed at growth stage V1.

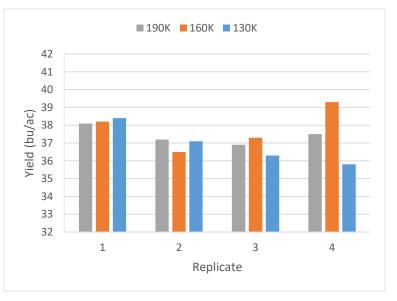
Trial ID: 2018-SP16 - R.M. of Woodlands

Objective: Quantify the agronomic and economic impacts of a seeding rate of 190,000 seeds/ac, 160,000 seeds/ac and 130,000 seeds/ac.

TRIAL INFORMATION Treatment 190K vs 160K vs 130K **Rural Municipality** Woodlands **Previous Crop** Spring Wheat **Soil Texture** Clay Tillage Conventional **Seeding Equipment** Air Drill **Planting Date** May 23, 2018 Variety Bourke R2X 10″ **Row Spacing Harvest Date** September 20, 2018


SEEDING RATE VS. PLANT STAND								
Plant Stand @ Plant Stand								
Seeding Rate	V1	Harvest						
190,000 seeds/ac	167,000	129,000						
160,000 seeds/ac	131,000	122,000						
130,000 seeds/ac	94,000	97,000						

PRECIPITATION ^t									
	i May	June	i July	Aug					
Rainfall	47	90	90	77					
Normal	54	92	66	63					


+ Growing season precipitation (mm)

OVERALL YIELD							
Mean (bu/ac)							
190,000 seeds/ac	37.8						
160,000 seeds/ac	37.4						
130,000 seeds/ac	36.9						
P-Value	0.4267						
CV	2.6%						
Significance	No						

NDVI FIELD IMAGE – AUGUST 16, 2018

STRIP YIELD

Summary: There was no significant yield difference between soybeans seeded at 190,000 seeds/ac, 160,000 seeds/ac, and 130,000 seeds/ac on 10" row spacing. Soybean plant stand ranged from a high of 167,000 plants/ac to a low of 94,000 plants/ac when assessed at growth stage V1.

The objective of this study was to quantify the agronomic effects of reduced tillage of ryegrass stubble on a soybean test crop. A single coulter pass in the fall (minimum till) was compared to a 1 pass coulter, 1 pass field cultivator, and 1 pass coulter in the fall (conventional till).

Soybean residue management trial summary at one On-Farm Network trial in Manitoba in 2018.

Tria		Rural Municipality	Seeding Date	Soil Temp @ 5 cm* Conv. Till Min. Till		Ļ			Yield		cv	P-Value	Statistically Significant
			2410	Conv. T	ill Min. Till	Conv. Til	I Min. Till	Conv. Till	Min. Till	Difference			@ 95%
					°C	'000/ac		'000/ac bu/ac		bu/ac	%		
SRIV	101	Roland	May 4	12.4	10.4	109	109	39.3	39.2	0.1	2.0	0.7734	No

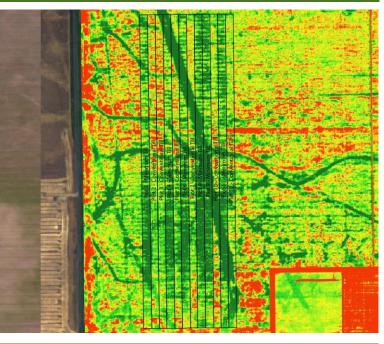
*Average hourly soil temperature at 5 cm the day of planting

Soybean Residue Management Trial

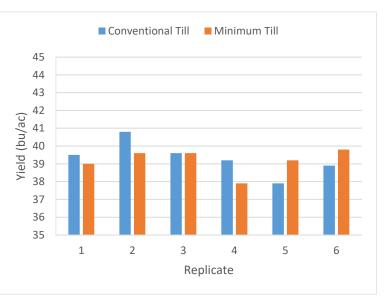
Trial ID: 2018-SRM01 – R.M. of Roland

Objective: Quantify the agronomic effects of reduced tillage of ryegrass stubble on a soybean test crop. A single coulter pass in the fall (minimum till) was compared to a 1 pass coulter, 1 pass field cultivator, and 1 pass coulter in the fall (conventional till).

TRIAL INFORMATION							
Treatment	Minimum Till vs. Conventional Tillage						
Rural Municipality	Roland						
Previous Crop	Ryegrass						
Test Crop	Soybean						
Soil Texture	Clay and Loam						
Minimum Tillage	Fall - 1x Coulter						
Conventional Tillage	Fall - 1x Coulter, 1x Field Cultivator, 1x Coulter						
Seeding Equipment	Salford Disc Drill						
Planting Date	May 4, 2018						
Variety	S003-L3						
Row Spacing	15"						
Seeding Rate	200,000 seeds/ac						
Harvest Date	September 4, 2018						


PRECIPITATION									
	May	i Aug							
Rainfall	42	92	44	28					
Normal	54	81	66	71					

+ Growing season precipitation (mm)


Soil Temperature and Plant Stand								
	Average Soil	Plant Stand @						
	temp at 5 cm*	V1						
Conventional Till	12.4°C	109,000 plants/ac						
Minimum Till	10.4°C	109,000 plants/ac						
*Average hourly soil temperature at 5cm the day of planting (May 4)								

OVERALL YIELD							
	Mean (bu/ac)						
Conventional Till	39.3						
Minimum Till	39.2						
Yield Difference	0.1						
P-Value	0.7734						
cv	2.0%						
Significance	No						

NDVI FIELD IMAGE – AUGUST 11, 2018

STRIP YIELD

Summary: There was no significant yield difference between a single pass of a coulter (minimum till) compared to a single pass of a coulter, followed by a single pass of a field cultivator and another pass of a coulter (conventional till) in ryegrass stubble. The average soil temperature at 5 cm the day of planting was 2°C warmer for conventional till compared to no-till, and there was no difference in plant stand at growth stage V1. Rainfall was below average for the growing season, with the exception of June which was above normal.

The objective of this study was to quantify the agronomic and economic effects of field rolling after soybean planting. This trial in conjunction with the University of Manitoba, Prairie Agricultural Machinery Institute (PAMI), and MPSG.

The effect of rolling was evaluated at 7 on-farm trials in 2018. Data summarization and analysis is on-going and will be reported when available.

If you are interested in the effect of field rolling on soil erosion and soybean performance on non-stony fields, contact MPSG to learn more or sign up to participate in this trial in 2019.

97

The objective of this study was to quantify the agronomic and economic impacts of both a lesser rate of nitrogen and split nitrogen application to corn in alternating randomized strips across the field.

Corn nitrogen timing trial summary of Split App vs. Base N at 16 On-Farm Network trials across Manitoba in 2018

TRIAL ID	Date Seeded	N Rate Applied (actual lbs/acre)	Base N Type (Spring)	N Application Date (SD)	N Type (SD)	Sidedress Stage	Total Rainfall (Seeding - Maturity) (in)	Split App Yield (bu/ac)	Base N Yield (bu/ac)	Yield Difference (bu/ac)
2017-CRN06	5-9-2017	175 vs. 135 + 40 SD	Urea + Agrotain (B)	7-10-2017	UAN (Dribbled)	V8	5.2	117.2	126.0	-8.8
2017-CRN03	5-5-2017	150 vs. 110 + 40 SD	Urea (B+I)	6-27-2017	UAN (Y-Drop)	V5	5.1	130.2	135.9	-5.7
2017-CRN07	5-10-2017	142 vs. 168 (102 + 66 SD)	Urea (B+I)	6-22-2017	UAN (Coulter Injection)	V5	7.0	121.2	126.6	-5.3
2017-CRN05	5-10-2017	80 vs. 40 + 40 SD	NH3 (Banded with A/S)	6-21-2017	UAN (Streamed)	V4	5.3	122.8	125.8	-3.0
2018-CRN02	5-2-2018	155 vs. 115 vs. 115 + 40 SD	Urea (B+I)	6-21-2018	UAN (Broadcast)	V4	7.4	47.9	50.5	-2.6
2018-CRN03	5-2-2018	130 vs. 90 vs. 90 + 40 SD	Urea (Banded with A/S)	6-22-2018	UAN + Agrotain (Y-Drop)	V5	7.3	86.2	87.3	-1.1
2018-CRN06	5-7-2018	155 vs. 115 vs. 115 + 40 SD	Urea (B)	6-20-2018	UAN + Agrotain (Y-Drop)	V5	7.4	152.2	153.0	-0.8
2017-CRN01	5-5-2017	100 vs. 60 + 40 SD	UAN + Agrotain Plus (B)	6-20-2017	UAN (Streamed)	V4	5.3	140.8	141.5	-0.7
2017-CRN08	5-5-2017	100 vs. 60 + 40 SD	UAN + Agrotain Plus (B)	6-20-2017	UAN (Streamed)	V4	5.8	135.5	135.7	-0.2
2018-CRN05	5-10-2018	150 vs. 110 vs. 110 + 40 SD	Urea (B+I)	6/21/2018	UAN (Dribbled)	V4	9.1	133.7	131.8	1.9
2017-CRN04	5-3-2017	112 vs. 72 + 40 SD	UAN (Banded with A/S)	6-16-2017	UAN (Y-Drop)	V4	8.2	168.4	165.3	3.2
2018-CRN09	5-10-2018	120 vs. 80 vs. 80 + 40 SD	NH3 (Banded with Strip Till)	6-14-2018	UAN (Streamed)	V4	6.9	147.5	144.0	3.5
2017-CRN09	5-4-2017	100 vs. 60 + 40 SD	Urea (Banded with A/S)	7-4-2017	UAN (Broadcast)	V6	6.6	101.1	96.7	4.4
2017-CRN02	5-2-2017	145 vs. 105 + 40 SD	UAN (B+I)	6-16-2017	UAN (Y-Drop)	V5	8.4	179.2	173.3	5.9
2018-CRN01	5-5-2018	135 vs. 95 vs. 95 + 40 SD	Urea (Banded with Strip Till)	6-14-2018	UAN (Y-Drop)	V4	8.5	168.5	161.5	7.0
2018-CRN04	5-1-2018	145 vs. 105 vs. 105 + 40 SD	UAN (B+I)	6-14-2018	UAN (Y-Drop)	V4	8.5	153.2	142.9	10.3
B = Broadcast	B+I = Broad	cast + Incorporation				AVERAGE	7.0	131.6	131.1	0.5

B = Broadcast B+I = Broadcast + Incorporation

SD = Sidedress

Indicates Statistical Difference at 95% confidence interval

Base N vs. Base N - 40N vs. Base N - 40N + 40N @ Sidedress

Objective: The purpose of this project is to quantify the agronomic and economic impacts of both a lesser rate nitrogen and a split nitrogen application to corn in alternating randomized strips across the field.

L INFORM	1ATION				That ID	: 2018-CRN	02 — R.M.	of Glenella-	Lansdowne
						FIELD I	MAGE		
						SUB	1000		
						2 - 10			
Cultivate		1x (Fall)						
					4616	-3			ase N (145)
-							11 Sol	10 - Low N	(105)
				Kach A	Y		EIZ SM	8 - Low N	(105)
	eds/ac				1			5 B	ase N (145)
-					Contra .		å, Sp		AN COM
		5 + 40 4	ചാ				7 4 4	ALTS! TO	asé N (145)
		.5 + 40 (ענ ש	- NG	Territori	(interiment	Linu/m	in the second la	No.
		ah (D i i)							I Distants
						STRIP	/IELD		
•									
Novembe	er 01, 20	18		60.00 —					
S (prior to	spring	applicat	tion)	50.00 —					
pm) k	(ppm)	%	О.М.	(ju 40.00 -		╶ ┛ ╔╟╴		╶ ┛ ┛╟╴	
)	100		2.0	() () () () () () () () () () () () () (
	N (mm)								
		Total							
-			65%						
			Normal	0.00	1	2	3	4	
.9 /4.4	03.9	200.8		■ 155N	50.49 39.00		47.89		50.05 42.57
OVERALL YIELD				■ 115N + 40N	38.45	40.48	49.76	53.54	47.88
se N	-40N		-	Summary: Ther	e was no	statistical d	ifference in	yield betw	een the
				three treatment	-				
	Arden Ryegrass Loam Cultivate Harrow 1: May 02, 2 Cultivate 30" 30, 2 30, 2 30	Ryegrass Loam Cultivate 1x, Disc May 02, 2018 LR 9573 VT2PRIB 30" 34,000 seeds/ac 22,000 plants/ac 155 vs. 115 vs. 11 d of Application Urea, APP & Pota UAN (Broatcast) November 01, 20 S (prior to spring a pm) K (ppm) CIPITATION (mm) ne July Aug .0 85.6 34.5 .9 74.4 65.9	Arden Ryegrass Loam Cultivate 1x, Disc 1x (Fall harrow 1x May 02, 2018 LR 9573 VT2PRIB 30" 34,000 seeds/ac 22,000 plants/ac 155 vs. 115 vs. 115 + 40 (Control on the second on the seco	Arden Ryegrass Loam Cultivate 1x, Disc 1x (Fall) May 02, 2018 May 02, 2018 Sorrow 1x 307 307 34,000 seeds/ac 22,000 plants/ac 155 vs. 115 vs. 115 + 40 @ SO 155 vs. 115 vs. 115 + 40 @ SO V	Arden Ryegrass Loam Cultivate 1x, Disc 1x (Fall) Harrow 1x May 02, 2018 LR 9573 VT2PRIB 30" 34,000 seeds/ac 22,000 plants/ac 155 vs. 115 vs. 115 + 40 @ SD d of Application Urea, APP & Potash (B+I) UAN (Broadcast) V4 November 01, 2018 SC (prior to spring application) main 100 2.0 SC (prior to spring application) main 100 2.0 CIPITATION (mm) May 01, 24, 05.9 65% of Normal .0 34.5 187.4 .0 34.5 187.4 .0 34.5 187.4 .0 34.5 187.4 .0 85.6 34.5 187.4 .0 34.5 187.4 .0 74.4 65.9 286.8 DVERALL YIELD Split 65% .1155N 1155N 1155N	Arden Ryegrass Loam Cultivate 1x, Disc 1x (Fall) Harrow 1x May 02, 2018 LR 9573 VT2PRIB 30" 34,000 seeds/ac 22,000 plants/ac 155 vs. 115 vs. 115 + 40 © SD d of Application Urea, APP & Potash (B+l) UAN (Broadcast) V4 November 01, 2018 S (prior to spring applicator) pm) K (ppm) % O.M. a 100 2.0 CIPITATION (mm) me july Aug Total 9 74.4 65.9 286.8 DVERALL VIELD Split se N _40N Application	Arden FIELD IN Ryegrass Ioam Cultivate 1x, Disc 1x (Fall) The server of the server	Arden FIELD IMAGE Ryegrass Loam Loam Support of the string application QUPA APP & Potash (B+1) QUPA APP & Potash (B+1) Urea, APP & Potash (B+1) Strip YIELD UAN (Broadcast) V4 Strip YIELD So prior to spring application Strip YIELD QUPA APP & Potash (B+1) Good UAN (Broadcast) V4 Strip YIELD So prior to spring application Good QUPA APP & Potash (B+1) Good QUPA APP & Potash (B+1) Good QUPA APP & Potash (B+1) Good QUPA APP & Total Good QUPA APP & Total Good QUPA APP & Potash (B+1) Good QUPA APP & Total Goo	Arden FIELD IMAGE Ryegrass Image: Comparison of the symmetry of

Phone: 204-745-6661 Toll Free: 1-877-598-5685 Website: manitobacorn.ca

Base N vs. Base N - 40N vs. Base N - 40N + 40N @ Sidedress

Objective: The purpose of this project is to quantify the agronomic and economic impacts of both a lesser rate nitrogen and a split nitrogen application to corn in alternating randomized strips across the field.

TRIAL INFORMATION							I	rial ID: 201	8-CRN04 —	R.M. of No	orth Norfolk
Location	Ba	igot						FIELD IN	MAGE		
Previous Cro	o Sp	ring Wl	neat						and the second		
Soil Descripti	on Sa	ndy Loa	am				- A	100			
Tillage		sc 1x (F sc 1x (S	-						2 - Split (1	The second s	<u>N(145)</u>
Planting Date	e M	ay 01, 2	2018			and the second		And the second second	1.00/	4 - Base	N (145)
Variety	P7	'958AM					el. Martini		6 - Split (1	Low N (105	
Row Spacing	30) <i>''</i>					100		7 - Split (1		
Seeding Rate	33	,000 se	eds/ac							8 - Base - Low N (105	N (145)
Plant Stand (-	ants/ac						10 - Split (1		
N Rate				05 + 40 (@ SD				11	- Low N (105	The Course of th
N Type and N										12 - Base	N (145)
	pring U/			Banded)		ALL CONTRACTOR	-			Sec.	See Part
	dress U/			,				STRIP \	/IELD		
Harvest Date			31, 2018	3		180.00 -					
						160.00 -					
SOIL PROP						140.00 —					
N 0-24"	P (ppm	i) I	(ppm)	%	0.M.	(jp 120.00 -					
24	26		98		1.3	- 00.00 - (pn / ac) - 00.00 - (pn / ac) - 00.08 - (pn / ac)					
	PRECIP		N (mm)			i €0.00 —					
Ma	y June	July	Aug	Total		40.00 —					
Rainfall 19.	-	73.7	45.2	214.7	75% of	20.00 -					
Normal 58.		74.4	65.9	286.8	Normal	0.00	1 152.19	2	3	4	142.07
						■ 145N ■ 105N	132.19	120.77 128.16	140.41 126.17	158.09 129.75	142.87 129.06
	OVE	RALL Y	IELD			¥ 105N + 40N	152.01	149.04	152.99	158.92	153.24
	Base	N	-40N		Split lication	Summary: Ther	-				the split
bu./ac	142.9	9	129.1	1	53.2	application (105	+40N) con	npared with	the low rat	te (105N).	

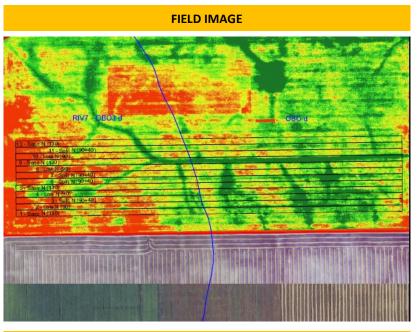
MANITOBA

CORN GROWERS

. ..

Base N vs. Base N - 40N vs. Base N - 40N + 40N @ Sidedress

Objective: The purpose of this project is to quantify the agronomic and economic impacts of both a lesser rate nitrogen and a split nitrogen application to corn in alternating randomized strips across the field.


Trial ID: 2018-CRN03 — R.M. of Dufferin

TRIAL INFORMATION							
Location	Carman						
Previous Crop	Soybeans						
Soil Description	Clay						
Tillage	Deep Tillage 1x (Fall)						
Planting Date	May 02, 2018						
Variety	A4939						
Row Spacing	20"						
Seeding Rate	36,000 seeds/ac						
Plant Stand @ V2	29,000 plants/ac						
N Rate	130 vs. 90 vs. 90 + 40 @ SD						
N Type and Metho	d of Application						
Spring	Urea + MAP & AS (Banded)						
Sidedress	UAN (Broadcast) V5						
Harvest Date	September 25, 2018						
SOIL PROPERTIE	S (prior to spring application)						
N 0-24" P (p	pm) K (ppm) % O.M.						
66 (6 512 5.2						
PRECIPITATION (mm)							
May Ju	no luly Aug Total						

PRECIPITATION (mm)									
	May	June	July	Aug	Total	58%			
Rainfall						of			
Normal	69.6	96.4	78.6	74.8	319.4	Normal			

OVERALL YIELD							
	Base N	-40N	Split Application				
bu./ac	87.3	81.7	86.2				

TONE AG CONSULTING LTD.

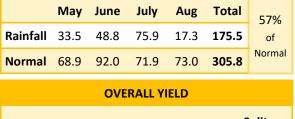
Summary: There was a significant yield difference between the split application (90+40N) compared with the low rate (90N).

MANITOBA CORN GROWERS ASSOCIATION INC.

Phone: 204-745-6661 Toll Free: 1-877-598-5685 Website: manitobacorn.ca

3 Nitrogen Rates vs Base N - 40N + 40N @ Sidedress

Objective: The purpose of this project is to quantify the agronomic and economic impacts of both different rates of nitrogen and a split nitrogen application to corn in alternating randomized strips across the field.


TR	IAL INFORMATION		Trial ID: 2018-CRN09 — R.M. of Glenboro-South Cypress
			FIELD IMAGE
Location	Glenboro		
Previous Crop	Soybeans		1 - Base N (120)
Soil Description			2 - Mid N (100)
Son Description			3 - Low N (80)
Tillage	Strip Till 1x (Spring)		4 - Split N (80+40)
			5 - Base N (120)
Planting Date	May 10, 2018		6 - Mid N (100)
•	•		7 - Low N (80) 8 - Split N (80+40)
Variety	39V09/P7527AM		9 - Split N (80+40)
Row Spacing	30″		10 - Base N (120)
			11 - Low N (80)
Seeding Rate	35,000 seeds/ac		12 - Mid N (100)
Plant Stand @ V2	33,000 plants/ac		13 - Low N (80)
NData	120		14 - Split N (80+40)
N Rate	120 vs. 100 vs. 80 vs. 80 + 4	10 @ SD	15 - Base N (120)
N Type and Meth	od of Application		16 - Mid N (100)
Spring	g Anhydrous (Strip Till)		
Sidedres	s UAN (Streamed) V4-V5		STRIP YIELD
Harvest Date	November 19, 2018		180.00
	,		160.00
SOIL PROPERT	IES (prior to spring applica	tion)	140.00
N 0-24" P (ppm) K (ppm) %	О.М.	
25	10 144	7.9	() 120.00 100.00 80.00 100.00 0 100.00 1
			₩ 60.00
PR	ECIPITATION (mm)		40.00
May J	une July Aug Total		20.00
-		57%	
rainian 33.5 4	8.8 75.9 17.3 175.5	of	1 2 3 4

🖬 120N

100N

M 80N

■ 80N + 40N

	Base N	-40N	Split Application
bu./ac	144.0	129.0	147.5

TONE AG CONSULTING LTD. Summary: There was a significant yield difference between the Base Rate (120N) compared with the low rate (80N). No statistical differences between the other treatments were observed.

121.48

137.65

114.61

144.05

171.02

165.32

151.26

119.99

Phone: 204-745-6661 Toll Free: 1-877-598-5685 Website: manitobacorn.ca

167.70

126.89

151.53

167.21

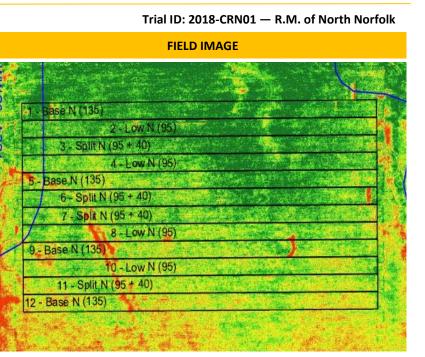
115.90

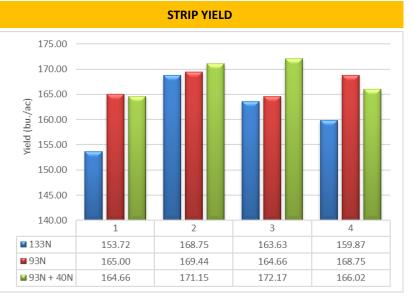
116.87

98.73

158.55

Base N vs. Base N - 40N vs. Base N - 40N + 40N @ Sidedress


Objective: The purpose of this project is to quantify the agronomic and economic impacts of both a lesser rate nitrogen and a split nitrogen application to corn in alternating randomized strips across the field.


TRIAL INFORMATION								
Location	MacG	MacGregor						
Previous Crop	Dry Be	eans						
Soil Description	Loam							
Tillage	Strip T	-ill 1x (Sprir	ng)					
Planting Date	May 0	5, 2018						
Variety	TH757	78VT2P						
Row Spacing	30″							
Seeding Rate	34,000 seeds/ac							
Plant Stand @ V3	33,000 plants/ac							
N Rate	133 vs	s. 93 vs. 93	+ 40 @ SD					
N Type and Metho	d of Ap	plication						
Spring	Urea 8	& Potash (B	anded)					
Sidedress	UAN (Y-drop) V4						
Harvest Date	Nover	nber 15, 20)18					
SOIL PROPERTIE	S (prio	r to spring	application)					
N 0-24" P (p	opm)	K (ppm)	% O.M.					
8 2	21	163	3.2					
PRECIPITATION (mm)								

PRECIPITATION (mm)										
	May	June	July	Aug	Total	75%				
Rainfall						of				
Normal	58.6	87.9	74.4	65.9	286.8	Normal				

OVERALL YIELD							
	Base N	-40N	Split Application				
bu./ac	161.5	167.0	168.5				

TONE AG CONSULTING LTD.

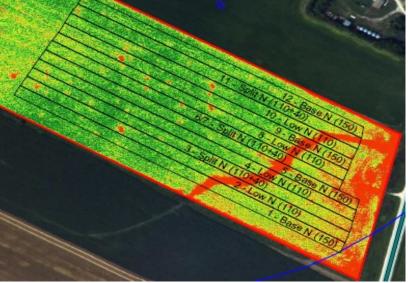
Summary: There was a significant yield difference between the split application (93+40N) compared with the base rate (133N).

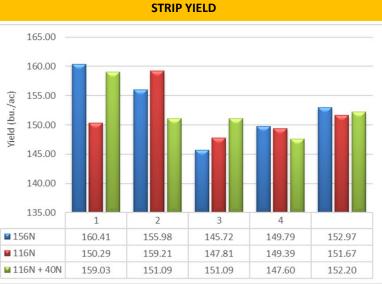
Phone: 204-745-6661 Toll Free: 1-877-598-5685 Website: manitobacorn.ca

Base N vs. Base N - 40N vs. Base N - 40N + 40N @ Sidedress

Objective: The purpose of this project is to quantify the agronomic and economic impacts of both a lesser rate nitrogen and a split nitrogen application to corn in alternating randomized strips across the field.

TRIAL INFORMATION Location Ste. Anne **Previous Crop** Soybeans **Soil Description** Clay Chisel Plowed 1x (Fall) Tillage Harrow 1x (Spring) **Planting Date** May 07, 2018 DKC33-78RIB Variety **Row Spacing** 30" **Seeding Rate** 34,000 seeds/ac Plant Stand @ V2 31,000 plants/ac 156 vs. 116 vs. 116 + 40 @ SD N Rate N Type and Method of Application **Spring** Urea (Broadcast) Sidedress UAN (Y-drop) V5 165.00 **Harvest Date** October 29, 2018 160.00 **SOIL PROPERTIES (prior to spring application)** 155.00 N 0-24" P (ppm) K (ppm) % O.M. 26 476 7.6 57 150.00


PRECIPITATION (mm)									
	May	June	July	Aug	Total	56%			
Rainfall						of			
Normal	69.2	100.1	93.2	73.8	336.3	Normal			


OVERALL YIELD							
	Base N	-40N	Split Application				
bu./ac	153.0	151.7	152.2				

TONE AG CONSULTING LTD.

Trial ID: 2018-CRN06 - R.M. of Ste. Anne

Summary: There were no statistical differences between the three treatments.

MANITOBA CORN GROWERS ASSOCIATION INC.

Phone: 204-745-6661 Toll Free: 1-877-598-5685 Website: manitobacorn.ca

Corn Trial—Nitrogen Rate & Timing

Base N vs. Base N - 40N vs. Base N - 40N + 40N @ Sidedress

Objective: The purpose of this project is to quantify the agronomic and economic impacts of both a lesser rate nitrogen and a split nitrogen application to corn in alternating randomized strips across the field.

TR					Trial ID: 2018-CRN05 — R.M. of Wallace-Woodworth				
		ATION					FIELD IMAGE	E	
Location	Virden				W L L A	ALLAN COM	A STREAM	3 97 Statistics	
Previous Crop	Canola							Concept 1 1	
Soil Description	Loam							2 - Low N	Base N (150)
Tillage	Heavy Ha	rrow 2x (Fall)		PDA3		3 - S	plit N (110+40) 4 - Low N (17.10
Planting Date	May 10, 2	2018					19.		Base N (150)
Variety	P7211HR					Car and		plit N (110+40)	
Row Spacing	30"						y si	8 - Low N (110
Seeding Rate	30,000 se	eds/ac					Ale S		ase N (150)
Plant Stand @ V2	31,000 pla	ants/ac			?			10 - Low N (III N (110+40)	110)
N Rate	153 vs. 11	L3 vs. 113	+ 40 (ه SD	<u> </u>	11	and the second		ase N (150)
N Type and Meth	od of Applic	ation				1. 1. 1	1 1 Mar 1	6	Ser 1
Spring	g Urea, MA	P & Potas	sh (B+I)	xbxa - PDA3		CXF5 1.0	PDA3 TOP	<u></u>
Sidedres	s UAN (Drit	obled) V4					STRIP YIELD		
Harvest Date	October 3	31, 2018			140.00				
SOIL PROPERT	IES (prior to	spring a	oplicat	ion)	135.00				
N 0-24" P (ppm) k	< (ppm)	%	0.М.	() 130.00				
40	9	180		3.4	(c) 130.00 (c) (c) (c) (c) (c) (c) (c) (c) (c) (c)				
PR	ECIPITATIO	N (mm)			i , , , , , , , , , , , , , , , , , , ,				
May Ji			Total		115.00				
	27.8 71.1		231.2	87%	110.05				
				of Normal	110.00	1	2	3	4
Normal 54.1 8	2.2 66.7	62.1	265.1		■ 153N ■ 113N	131.55	137.99	125.16	132.47
	OVERALL Y	IELD			■ 113N ■ 113N + 40N	123.59 134.33	134.07 137.08	124.36 132.93	121.88 130.45

Summary: There was a significant yield difference between the split application (113+40N) compared with the low rate (113N).

> MANITOBA CORN GROWERS ASSOCIATION INC.

Phone: 204-745-6661 Toll Free: 1-877-598-5685 Website: manitobacorn.ca

Split

Application

133.7

-40N

126.0

TONE AG CONSULTING LTD.

bu./ac

Corn Trial—Nitrogen Rate

Base N vs. Base N + 30N vs. Base N + 60N

Objective: The purpose of this project is to quantify the agronomic and economic impacts of additional nitrogen application to corn on fall-applied manured ground in alternating randomized strips across the field.

TRI	IAL INFORM	ΙΔΤΙΟΝ						Trial ID: 2018-	CRN10 — R.M	. of Montcalm
Location	Altona							FIELD IMAGE		
							1.22		2	
Previous Crop	Canola					CLET				
Soil Description	Clay					ase N	0 0 0			
Tillage	Cultivate	3x (Fall)			P.	1 - B + 30 - 1 - 30 - 1 - 30 - 8	8ase N + 6 7 - B + 30 8ase N + 6 8ase <u>N + 6</u>			
Planting Date	May 01, 2	2018				ase N 3-1 ase N	6 - 1 9 - 1 11 - 1	- 4		PME5 - DHO
Variety	TH 7578 \	VT2P				2-B 4-B	8-B			1991-
Row Spacing	30″									
Seeding Rate	35,000 se	eds/ac			4			DCS7 -	LKD3	
Plant Stand @ V3	34,000 pla	ants/ac) 1 4 4	
N Rate	190N vs. 2	220N vs.	250N					1 Sinte		<u>Mada</u>
N Type and Metho	od of Applic	cation						The second se	New York	
Fall	I Liquid Sw	ine Manu	ure (Inj	ected)				1.18.39		
In-season	u UAN (Y-dı	rop) V6								
Harvest Date	October 1	L8, 2018					a din Sugar Anas			
SOIL PROPERTI	ES (prior to	spring a	pplicat	tion)				STRIP YIELD		
N 0-24" P (ppm) k	K (ppm)	%	о.м.		150 —				
190	91	482		6.0		145 —				
		N ()			u./ac)	140 —				
	ECIPITATIO				rield (bu./ac)	135 — 130 —				
-	ine July		Total	50%						
Rainfall 34.8 5	7.7 52.1	26.9	171.5	of		125 -				
Normal 68.6 10	01.8 85.6	83.9	339.9	Normal		120	1	2	3	4
					1 9		137.7	132.3	146.4	141.2
	OVERALL Y	IELD				90N + 30N 90N + 60N	135.8 126.8	140.5 142.6	134.0 139.9	141.4
Ba	ase N	+30N	+	-60N						

Summary: There was no statistical difference in yield between the three treatments.

> MANITOBA CORN GROWERS ASSOCIATION INC.

Phone: 204-745-6661 Toll Free: 1-877-598-5685 Website: manitobacorn.ca

(190N)

139.4

(220N)

137.9

(250N)

137.8

Corn Trial—Nitrogen Rate

Base N vs. Base N + 25N @ Sidedress vs. Base N + 50N @ Sidedress

Objective: The purpose of this project is to quantify the agronomic and economic impacts of additional in-season nitrogen application to corn on fall-applied manured ground in alternating randomized strips across the field.

TRIAL INFORMATION								
Location	Landr	Landmark						
Previous Crop	Spring	g Wheat						
Soil Description	Clay							
Tillage		Plow 1x (Fall) w 1x (Spring))					
Planting Date	May (94, 2018						
Variety	DKC3	3-78RIB						
Row Spacing	30″							
Seeding Rate 34,000 seeds/ac								
Plant Stand @ V	/3 32,00	32,000 plants/ac						
N Rate	217N	vs. 242N vs. 2	67N					
N Type and Met	hod of Ap	plication						
F	all Liquic	Poultry Man	ure (B+I)					
Sidedre	ess UAN (Y-drop) V5						
Harvest Date	Septe	mber 29, 201	8					
SOIL PROPER	TIES (pric	r to spring ap	plication)					
N 0-24" F	o (ppm)	K (ppm)	% O.M.					
217	32	528	7.4					

PRECIPITATION (mm)								
	May	June	July	Aug	Total	55%		
Rainfall	34.3	68.1	54.6	28.2		of		
Normal	69.2	100.1	93.2	73.8	336.3	Normal		

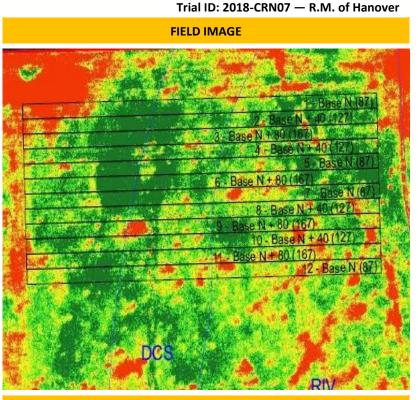
OVERALL YIELD								
	Base N +25N +50N (217N) (242N) (267N)							
bu./ac	112.9	137.0	130.1					

Summary: There were no statistical differences between the three treatments.

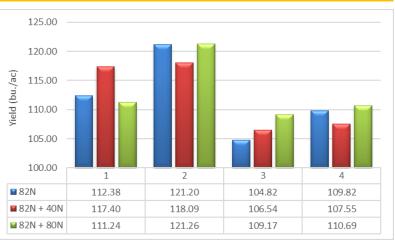
MANITOBA CORN GROWERS ASSOCIATION INC.

Phone: 204-745-6661 Toll Free: 1-877-598-5685 Website: manitobacorn.ca

Corn Trial—Nitrogen Rate


Base N vs. Base N + 40N vs. Base N + 80N

Objective: The purpose of this project is to quantify the agronomic and economic impacts of additional nitrogen application to corn on fall-applied manured ground in alternating randomized strips across the field.


TRIAL INFORMATION						
Location	New	Bothwell				
Previous Crop	Soyb	eans				
Soil Description	Clay					
Tillage		Cultivate 2x (Fall) Harrow 1x (Spring)				
Planting Date	May	08, 2018				
Variety	P8210HR					
Row Spacing	22"	22"				
Seeding Rate	g Rate 29,500 seeds/ac					
Plant Stand @ V3	28,90	00 plants/ac				
N Rate	82N vs. 122N vs. 162N					
N Type and Metho	od of A	pplication				
Fal	l Liqui	d Poultry Man	ure (I)			
Spring	g Urea	Urea (Broadcast) VE				
Harvest Date	October 02, 2018					
SOIL PROPERTI	ES (pri	or to spring a	pplication)			
N 0-24" P (ppm)	K (ppm)	% O.M.			
82	25	312	4.6			

PRECIPITATION (mm)								
	May	June	July	Aug	Total	54%		
Rainfall	36.8	46.5	62.7	36.6		of		
Normal	69.2	100.1	93.2	73.8	336.3	Normal		

OVERALL YIELD								
	Base N +40N +80N (82N) (122N) (162N)							
bu./ac	112.1	112.4	113.1					

STRIP YIELD

Summary: There were no statistical differences between the three treatments.

MANITOBA CORN GROWERS ASSOCIATION INC.

Phone: 204-745-6661 Toll Free: 1-877-598-5685 Website: manitobacorn.ca

Location

Corn Trial—Nitrogen Rate

Base N vs. Base N + 40N vs. Base N + 80N

Objective: The purpose of this project is to quantify the agronomic and economic impacts of additional nitrogen application to corn on fall-applied manured ground in alternating randomized strips across the field.

							Ті	rial ID: 2018-CF	RN08 — R.M. d	of De Salaberry	y
TRIA	AL INFOR	MATION						FIELD IMAGE			
	St. Pierr	e									
)	Soybear	ıs			1						
on	Clay					N THE LOOK	warman of		the second	and and	-
	Cultivat	e 1x, Har	row 1x (Fall)	Γ	1 - Base N (1	and the second				Ì
		,	,	,	Sec.	2 - Ba	ac N + 40 (210)	and the second second			
	April 28	, 2018			4		3 - Base N + 80	(250)		and the second second	-
	P7527A	М			1	Contraction of the second	se N + 40 (210)	<u> 1</u>	e State		
	-	IVI				5 - Base N (1	70) 6 - Base N + 80	(250)	No. 10 and	97.63	Sec.
	22"				Y	7 - Base N (1			or still		
	34,000 s	seeds/ac			\$ (\$)	8 - Ba	se N + 40 (210)		and the second second		
) V3	30,600 (olants/ac	;			10 80	9 - Base N + 80 se N + 40 (210)	(250)	and the second	Station of the	
		. 210N v			1.0		11 - Base N + 80	(250)			
			5. 25UN			12 - Base N (
letho	d of App	lication					14 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		44.50		
Fall	Liquid S	wine Ma	nure (Inj	ected)	OBOd	8-RIV2				OBOd8-RIV2	
oring	UAN (Br	oadcast)	VE		100					Carl State	
	Septem	ber 25, 2	018		0	ni ba		ition e differen		ur. Actority	
								STRIP YIELD			
ERTIE	S (prior 1	to spring	applicat	tion)		165					
Р (р	pm)	K (ppm)) %	0.М.		160					
3	5	555		6.3		155					
					./ac)	150	_				-
PRE	CIPITATI	ON (mm))		Yield (bu./ac)	145 140					
/ Jur	ne July	Aug	Total	/	Yiel	135					_
46	.5 62.7	7 36.6	182.6	54% of		130					
				Normal		125	1	2	3	4	1
100).1 93.2	2 73.8	336.3			170N	139.47	145.71	150.48	159.24	
C	OVERALL	YIELD				170N + 40N	146.85	150.13	154.81	156.45	1
						170N + 80N	148.44	148.69	149.53	156.71	

Summary: There were no statistical differences between the three
treatments.

MANITOBA CORN GROWERS ASSOCIATION INC.

Phone: 204-745-6661 Toll Free: 1-877-598-5685 Website: manitobacorn.ca

Location	Stiffene					
Previous Crop	Soybeans					
Soil Description	Clay					
Tillage	Cultivate 1x, Harrow 1x (Fall)					
Planting Date	April 28, 2018					
Variety	P7527AM					
Row Spacing	22"					
Seeding Rate	34,000 seeds/ac					
Plant Stand @ V3	30,600 plants/ac					
N Rate	170N vs. 210N vs. 250N					
N Type and Metho	d of Application					
Fall	Liquid Swine Manure (Injected)					
Spring	UAN (Broadcast) VE					
Harvest Date	September 25, 2018					
SOIL PROPERTIE	ES (prior to spring application)					
N 0-24" P (p	opm) K (ppm) % O.M.					
170 3	35 555 6.3					
PRECIPITATION (mm)						

PRECIPITATION (mm)								
	May	June	July	Aug	Total	54%		
Rainfall						of		
Normal	69.2	100.1	93.2	73.8	336.3	Normal		

OVERALL YIELD								
	Base N +40N +80N							
	(170N) (210N) (250N)							
bu./ac	148.7	152.1	150.8					

